- investigate.ai
- Analyzing the impact of particular judges on the US asylum process
- How nationality and judges affect your chance of asylum in immigration court
Running a regression on cleaned EOIR data#
Do certain judges or cities report refugees more often? This dataset is problematic and we're hardly experts, but let's take a look.
import pandas as pd
pd.set_option("display.max_columns", 100)
pd.set_option("display.max_rows", 500)
pd.set_option("display.float_format", "{:,.5f}".format)
TODO: While this notebook is in theory complete, it needs to be revised to add a lot lot lot more words.
Read in data#
The data is split across two files - one for cases, and one for proceedings. We previously filtered them down to about 2 million cases from around 8-10 million, so we're working with the filtered version here.
You'll also need to download the original dataset from here for information on judges and nationalities.
cases = pd.read_csv("data/cases-filtered.csv")
cases.head()
IDNCASE | NAT | CUSTODY | CASE_TYPE | UPDATE_SITE | DATE_OF_ENTRY | |
---|---|---|---|---|---|---|
0 | 2048319 | MX | N | RMV | MIA | 1954-08-06 00:00:00.000 |
1 | 2048321 | MX | N | RMV | HOU | NaN |
2 | 2048337 | MX | N | RMV | HOU | 1992-01-01 00:00:00.000 |
3 | 2048340 | CH | N | RMV | LOS | 2000-04-01 00:00:00.000 |
4 | 2047883 | TH | N | RMV | KAN | 2002-05-10 00:00:00.000 |
proceedings = pd.read_csv("data/proceedings-filtered.csv")
proceedings.head()
IDNCASE | OSC_DATE | IJ_CODE | DEC_TYPE | DEC_CODE | COMP_DATE | ABSENTIA | CASE_TYPE | |
---|---|---|---|---|---|---|---|---|
0 | 3320158 | 2000-02-16 00:00:00.000 | THS | O | X | 2002-08-23 00:00:00.000 | N | RMV |
1 | 3320170 | 1998-12-23 00:00:00.000 | HSD | O | T | 1999-06-08 00:00:00.000 | N | RMV |
2 | 3320191 | 1998-04-30 00:00:00.000 | PLM | NaN | NaN | 2000-05-09 00:00:00.000 | N | RMV |
3 | 3320210 | 1997-06-03 00:00:00.000 | BAN | O | V | 2000-04-17 00:00:00.000 | N | RMV |
4 | 3320218 | 1997-09-10 00:00:00.000 | EAL | O | V | 1999-04-14 00:00:00.000 | N | RMV |
Merge the datasets#
We can now combine the two datasets based on the case IDs.
merged = cases.merge(proceedings, on='IDNCASE')
merged.shape
(3504464, 13)
merged.head(2)
IDNCASE | NAT | CUSTODY | CASE_TYPE_x | UPDATE_SITE | DATE_OF_ENTRY | OSC_DATE | IJ_CODE | DEC_TYPE | DEC_CODE | COMP_DATE | ABSENTIA | CASE_TYPE_y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2048319 | MX | N | RMV | MIA | 1954-08-06 00:00:00.000 | 2001-02-13 00:00:00.000 | PAM | O | T | 2002-03-18 00:00:00.000 | N | RMV |
1 | 2048321 | MX | N | RMV | HOU | NaN | 1999-06-10 00:00:00.000 | CMR | O | T | 2000-02-02 00:00:00.000 | N | RMV |
Remove missing data#
We don't want anyone who is missing any of these fields. No date of entry? Out! No decision code? Out! No nationality? Out!
Let's take a quick look to see how much missing data there is.
merged.isna().mean()
IDNCASE 0.00000 NAT 0.00093 CUSTODY 0.00000 CASE_TYPE_x 0.00000 UPDATE_SITE 0.00001 DATE_OF_ENTRY 0.26022 OSC_DATE 0.00294 IJ_CODE 0.01560 DEC_TYPE 0.51286 DEC_CODE 0.62581 COMP_DATE 0.26548 ABSENTIA 0.26861 CASE_TYPE_y 0.00000 dtype: float64
It looks like around 63% don't have a decision, which of course we can't analyze. Looks like we're going to be losing a lot lot lot of rows, though.
print("Before dropping missing data:", merged.shape)
merged = merged.dropna()
print("After dropping missing data:", merged.shape)
Before dropping missing data: (3504464, 13) After dropping missing data: (1002980, 13)
That hurts, but maybe it's for the best!
codes = pd.read_csv("data/tblDecCode.csv", sep='\t')
codes
idnDecCode | strCode | strDescription | datCreatedOn | datModifiedOn | blnActive | |
---|---|---|---|---|---|---|
0 | 1 | A | LEGALLY ADMITTED | 2003-08-10 11:22:47.617 | NaN | 1 |
1 | 2 | C | CONDITIONAL GRANT | 2003-08-10 11:22:47.617 | NaN | 1 |
2 | 3 | D | DEPORTED | 2003-08-10 11:22:47.617 | NaN | 1 |
3 | 4 | E | EXCLUDED | 2003-08-10 11:22:47.617 | NaN | 1 |
4 | 5 | G | GRANTED | 2003-08-10 11:22:47.617 | 2003-11-03 00:00:00.000 | 1 |
5 | 6 | O | OTHER | 2003-08-10 11:22:47.617 | NaN | 1 |
6 | 7 | R | RELIEF/RESCINDED | 2003-08-10 11:22:47.617 | NaN | 1 |
7 | 8 | S | ALIEN MAINTAINS LEGAL STATUS | 2003-08-10 11:22:47.617 | NaN | 1 |
8 | 9 | T | CASE TERMINATED BY IJ | 2003-08-10 11:22:47.617 | NaN | 1 |
9 | 10 | V | VOLUNTARY DEPARTURE | 2003-08-10 11:22:47.617 | NaN | 1 |
10 | 11 | W | WITHDRAWN | 2003-08-10 11:22:47.617 | NaN | 1 |
11 | 12 | X | REMOVED | 2003-08-10 11:22:47.617 | NaN | 1 |
We're going to be interested in:
A - LEGALLY ADMITTED
as successfulC - CONDITIONAL GRANT
as successfulD - DEPORTED
as unsuccessfulG - GRANTED
as successfulR - RELIEF/RESCINDED
as successfulX - REMOVED
as unsuccessful
The others we'll remove, as we can't make a good judgment about what they really mean in the accepted/rejected spectrum.
Before we remove them, let's again see how common each code is.
merged.DEC_CODE.value_counts()
R 322356 X 257959 V 208949 T 192742 O 7625 D 4365 G 3426 Q 2913 I 1627 W 668 C 191 A 157 J 2 Name: DEC_CODE, dtype: int64
And now we'll filter for the decision codes we're interested in.
merged = merged[merged.DEC_CODE.isin(['A', 'C', 'D', 'G', 'R', 'X'])]
merged.head()
IDNCASE | NAT | CUSTODY | CASE_TYPE_x | UPDATE_SITE | DATE_OF_ENTRY | OSC_DATE | IJ_CODE | DEC_TYPE | DEC_CODE | COMP_DATE | ABSENTIA | CASE_TYPE_y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 2048340 | CH | N | RMV | LOS | 2000-04-01 00:00:00.000 | 2000-08-02 00:00:00.000 | WJM | O | R | 2000-12-04 00:00:00.000 | N | RMV |
5 | 2047890 | NN | N | RMV | PHI | 2049-08-31 00:00:00.000 | 1997-06-09 00:00:00.000 | DVF | O | X | 1998-04-23 00:00:00.000 | N | RMV |
8 | 2047893 | MX | N | RMV | SFR | 1954-06-25 00:00:00.000 | 2003-08-18 00:00:00.000 | LLR | O | R | 2004-11-29 00:00:00.000 | N | RMV |
11 | 2047908 | CA | N | RMV | DET | 1952-06-02 00:00:00.000 | 1997-06-10 00:00:00.000 | RDN | O | R | 2005-12-16 00:00:00.000 | N | RMV |
12 | 2047908 | CA | N | RMV | DET | 1952-06-02 00:00:00.000 | 1997-06-10 00:00:00.000 | JFW | O | X | 1998-12-11 00:00:00.000 | N | RMV |
merged.shape
(588454, 13)
Down to around 600,000 cases! Didn't we start with like ten million in the last notebook?
Feature engineering#
We're now going to create a feature as to whether asylum was granted or not. We'll count these:
A - LEGALLY ADMITTED
C - CONDITIONAL GRANT
G - GRANTED
R - RELIEF/RESCINDED
And the others - D - DEPORTED
and X - REMOVED
- we'll count as unsuccessful. We'll use the "turning true/false values into numbers" trick here.
merged['granted'] = merged.DEC_CODE.isin(['A', 'C', 'G', 'R']).astype(int)
merged.granted.value_counts()
1 326130 0 262324 Name: granted, dtype: int64
merged.DEC_TYPE.value_counts()
O 505468 W 79523 7 3460 6 2 C 1 Name: DEC_TYPE, dtype: int64
merged.head()
IDNCASE | NAT | CUSTODY | CASE_TYPE_x | UPDATE_SITE | DATE_OF_ENTRY | OSC_DATE | IJ_CODE | DEC_TYPE | DEC_CODE | COMP_DATE | ABSENTIA | CASE_TYPE_y | granted | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 2048340 | CH | N | RMV | LOS | 2000-04-01 00:00:00.000 | 2000-08-02 00:00:00.000 | WJM | O | R | 2000-12-04 00:00:00.000 | N | RMV | 1 |
5 | 2047890 | NN | N | RMV | PHI | 2049-08-31 00:00:00.000 | 1997-06-09 00:00:00.000 | DVF | O | X | 1998-04-23 00:00:00.000 | N | RMV | 0 |
8 | 2047893 | MX | N | RMV | SFR | 1954-06-25 00:00:00.000 | 2003-08-18 00:00:00.000 | LLR | O | R | 2004-11-29 00:00:00.000 | N | RMV | 1 |
11 | 2047908 | CA | N | RMV | DET | 1952-06-02 00:00:00.000 | 1997-06-10 00:00:00.000 | RDN | O | R | 2005-12-16 00:00:00.000 | N | RMV | 1 |
12 | 2047908 | CA | N | RMV | DET | 1952-06-02 00:00:00.000 | 1997-06-10 00:00:00.000 | JFW | O | X | 1998-12-11 00:00:00.000 | N | RMV | 0 |
More filters#
We now want to filter our cases a bit more:
- Only judges who have had a certain number of cases
- Only sites that have had a certain number of cases
- Only nationalities that have had a certain number of cases.
If they haven't had many occurrences, we can't reasonably pass judgment on them. We'll start by making a copy of our dataset so we can filter it again/differently later.
Filter judges#
Let's only look at judges with 300 or more cases.
common_judges = list(merged.IJ_CODE.value_counts()[merged.IJ_CODE.value_counts() >= 300].index)
has_common_judge = merged.IJ_CODE.isin(common_judges)
And sites that have shown up 300 or more times
common_sites = list(merged.UPDATE_SITE.value_counts()[merged.UPDATE_SITE.value_counts() >= 300].index)
has_common_site = merged.UPDATE_SITE.isin(common_sites)
has_common_site.value_counts()
True 586894 False 1560 Name: UPDATE_SITE, dtype: int64
And nationalities that have shown up... 300 times?
common_nats = list(merged.NAT.value_counts()[merged.NAT.value_counts() >= 300].index)
has_common_nationality = merged.NAT.isin(common_nats)
has_common_nationality.value_counts()
True 579619 False 8835 Name: NAT, dtype: int64
filtered = merged[has_common_judge & has_common_site & has_common_nationality]
filtered.shape
(548433, 14)
Inspecting our filtered results#
filtered.IJ_CODE.value_counts().head()
ROS 5817 PLM 5423 TAB 5320 BLF 5286 LTB 5219 Name: IJ_CODE, dtype: int64
filtered.UPDATE_SITE.value_counts().head()
NYC 117866 MIA 81559 LOS 58525 SFR 43356 ORL 21764 Name: UPDATE_SITE, dtype: int64
filtered.NAT.value_counts().head()
CH 79263 MX 71713 ES 43123 GT 36133 HA 30280 Name: NAT, dtype: int64
Perform our regression#
Now that we've successfully filtered our data, we can run our regression. We'll control for judges, cities, and nationalities. We'll be using the statsmodels formula method, with C()
for categorical variables. We'll use ROS
, NYC
as reference since they're the most popular judge and site. We'll use CH
(China) as the reference for nationality because the results are more readable than if we used Mexico.
No matter what you use as your reference the calculations are the same - it's just the point of comparison that is adjusted
%%time
import statsmodels.formula.api as smf
model = smf.logit("""
granted ~ C(IJ_CODE, Treatment('ROS')) + C(UPDATE_SITE, Treatment('NYC')) + C(NAT, Treatment('CH'))
""", data=filtered)
CPU times: user 1min 13s, sys: 8.1 s, total: 1min 21s Wall time: 1min 3s
It's a big dataset, so the actual fitting of the model takes a solid 7 minutes on my computer.
%%time
result = model.fit(method='bfgs', maxiter=1000)
result.summary()
Optimization terminated successfully. Current function value: 0.553741 Iterations: 442 Function evaluations: 443 Gradient evaluations: 443 CPU times: user 10min 40s, sys: 19.8 s, total: 11min Wall time: 5min 48s
Dep. Variable: | granted | No. Observations: | 548433 |
---|---|---|---|
Model: | Logit | Df Residuals: | 547919 |
Method: | MLE | Df Model: | 513 |
Date: | Sun, 19 Jan 2020 | Pseudo R-squ.: | 0.1915 |
Time: | 13:36:03 | Log-Likelihood: | -3.0369e+05 |
converged: | True | LL-Null: | -3.7561e+05 |
Covariance Type: | nonrobust | LLR p-value: | 0.000 |
coef | std err | z | P>|z| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
Intercept | 0.0616 | 0.052 | 1.192 | 0.233 | -0.040 | 0.163 |
C(IJ_CODE, Treatment('ROS'))[T.AA] | 0.2650 | 0.116 | 2.276 | 0.023 | 0.037 | 0.493 |
C(IJ_CODE, Treatment('ROS'))[T.AAK] | 0.8781 | 0.100 | 8.816 | 0.000 | 0.683 | 1.073 |
C(IJ_CODE, Treatment('ROS'))[T.AAS] | 1.0328 | 0.158 | 6.519 | 0.000 | 0.722 | 1.343 |
C(IJ_CODE, Treatment('ROS'))[T.AAT] | -0.3299 | 0.076 | -4.322 | 0.000 | -0.480 | -0.180 |
C(IJ_CODE, Treatment('ROS'))[T.AAV] | -0.6595 | 0.073 | -9.012 | 0.000 | -0.803 | -0.516 |
C(IJ_CODE, Treatment('ROS'))[T.ABM] | 0.0499 | 0.138 | 0.362 | 0.718 | -0.221 | 0.321 |
C(IJ_CODE, Treatment('ROS'))[T.ACH] | 0.9506 | 0.133 | 7.143 | 0.000 | 0.690 | 1.211 |
C(IJ_CODE, Treatment('ROS'))[T.ADM] | -0.2655 | 0.144 | -1.839 | 0.066 | -0.548 | 0.017 |
C(IJ_CODE, Treatment('ROS'))[T.AED] | 0.7910 | 0.095 | 8.336 | 0.000 | 0.605 | 0.977 |
C(IJ_CODE, Treatment('ROS'))[T.AEG] | 1.0850 | 0.102 | 10.601 | 0.000 | 0.884 | 1.286 |
C(IJ_CODE, Treatment('ROS'))[T.AEM] | -1.0406 | 0.157 | -6.617 | 0.000 | -1.349 | -0.732 |
C(IJ_CODE, Treatment('ROS'))[T.AJR] | 1.2478 | 0.088 | 14.208 | 0.000 | 1.076 | 1.420 |
C(IJ_CODE, Treatment('ROS'))[T.ALP] | -0.2225 | 0.121 | -1.833 | 0.067 | -0.460 | 0.015 |
C(IJ_CODE, Treatment('ROS'))[T.AND] | 0.4919 | 0.136 | 3.615 | 0.000 | 0.225 | 0.758 |
C(IJ_CODE, Treatment('ROS'))[T.AO] | -0.6558 | 0.067 | -9.757 | 0.000 | -0.788 | -0.524 |
C(IJ_CODE, Treatment('ROS'))[T.ARD] | -0.0690 | 0.107 | -0.646 | 0.518 | -0.279 | 0.140 |
C(IJ_CODE, Treatment('ROS'))[T.ASE] | 1.0163 | 0.070 | 14.525 | 0.000 | 0.879 | 1.153 |
C(IJ_CODE, Treatment('ROS'))[T.ASG] | 0.6007 | 0.085 | 7.057 | 0.000 | 0.434 | 0.768 |
C(IJ_CODE, Treatment('ROS'))[T.ASL] | 1.1510 | 0.082 | 13.968 | 0.000 | 0.990 | 1.313 |
C(IJ_CODE, Treatment('ROS'))[T.ASM] | -0.6735 | 0.096 | -7.047 | 0.000 | -0.861 | -0.486 |
C(IJ_CODE, Treatment('ROS'))[T.ATG] | 0.1473 | 0.081 | 1.824 | 0.068 | -0.011 | 0.306 |
C(IJ_CODE, Treatment('ROS'))[T.AVP] | 0.3564 | 0.069 | 5.195 | 0.000 | 0.222 | 0.491 |
C(IJ_CODE, Treatment('ROS'))[T.BAN] | -0.3424 | 0.061 | -5.632 | 0.000 | -0.461 | -0.223 |
C(IJ_CODE, Treatment('ROS'))[T.BAR] | 0.5409 | 0.092 | 5.854 | 0.000 | 0.360 | 0.722 |
C(IJ_CODE, Treatment('ROS'))[T.BAZ] | -0.4705 | 0.097 | -4.865 | 0.000 | -0.660 | -0.281 |
C(IJ_CODE, Treatment('ROS'))[T.BHA] | -1.7065 | 0.099 | -17.308 | 0.000 | -1.900 | -1.513 |
C(IJ_CODE, Treatment('ROS'))[T.BHS] | -0.5059 | 0.093 | -5.457 | 0.000 | -0.688 | -0.324 |
C(IJ_CODE, Treatment('ROS'))[T.BJE] | 0.2841 | 0.090 | 3.163 | 0.002 | 0.108 | 0.460 |
C(IJ_CODE, Treatment('ROS'))[T.BJP] | -0.1138 | 0.113 | -1.011 | 0.312 | -0.334 | 0.107 |
C(IJ_CODE, Treatment('ROS'))[T.BKS] | -0.0131 | 0.077 | -0.170 | 0.865 | -0.164 | 0.137 |
C(IJ_CODE, Treatment('ROS'))[T.BLF] | 1.1604 | 0.061 | 18.900 | 0.000 | 1.040 | 1.281 |
C(IJ_CODE, Treatment('ROS'))[T.BMB] | -0.3922 | 0.090 | -4.381 | 0.000 | -0.568 | -0.217 |
C(IJ_CODE, Treatment('ROS'))[T.BMO] | -0.0044 | 0.126 | -0.035 | 0.972 | -0.252 | 0.243 |
C(IJ_CODE, Treatment('ROS'))[T.BMP] | 0.2731 | 0.084 | 3.260 | 0.001 | 0.109 | 0.437 |
C(IJ_CODE, Treatment('ROS'))[T.BP1] | -0.5799 | 0.073 | -7.905 | 0.000 | -0.724 | -0.436 |
C(IJ_CODE, Treatment('ROS'))[T.BWS] | -0.2720 | 0.066 | -4.150 | 0.000 | -0.400 | -0.144 |
C(IJ_CODE, Treatment('ROS'))[T.CAB] | -0.1570 | 0.076 | -2.060 | 0.039 | -0.306 | -0.008 |
C(IJ_CODE, Treatment('ROS'))[T.CAD] | -0.3937 | 0.095 | -4.139 | 0.000 | -0.580 | -0.207 |
C(IJ_CODE, Treatment('ROS'))[T.CAK] | 0.7315 | 0.081 | 9.070 | 0.000 | 0.573 | 0.890 |
C(IJ_CODE, Treatment('ROS'))[T.CBA] | -0.6749 | 0.089 | -7.619 | 0.000 | -0.849 | -0.501 |
C(IJ_CODE, Treatment('ROS'))[T.CC] | 0.0011 | 0.089 | 0.012 | 0.991 | -0.173 | 0.175 |
C(IJ_CODE, Treatment('ROS'))[T.CC1] | -0.2162 | 0.118 | -1.829 | 0.067 | -0.448 | 0.016 |
C(IJ_CODE, Treatment('ROS'))[T.CDB] | 0.1482 | 0.115 | 1.291 | 0.197 | -0.077 | 0.373 |
C(IJ_CODE, Treatment('ROS'))[T.CEP] | 0.2739 | 0.083 | 3.314 | 0.001 | 0.112 | 0.436 |
C(IJ_CODE, Treatment('ROS'))[T.CES] | 0.3058 | 0.071 | 4.314 | 0.000 | 0.167 | 0.445 |
C(IJ_CODE, Treatment('ROS'))[T.CHC] | 0.0475 | 0.093 | 0.511 | 0.609 | -0.135 | 0.230 |
C(IJ_CODE, Treatment('ROS'))[T.CJL] | 0.7796 | 0.100 | 7.835 | 0.000 | 0.585 | 0.975 |
C(IJ_CODE, Treatment('ROS'))[T.CJS] | -0.5317 | 0.063 | -8.388 | 0.000 | -0.656 | -0.407 |
C(IJ_CODE, Treatment('ROS'))[T.CM1] | -0.8210 | 0.190 | -4.329 | 0.000 | -1.193 | -0.449 |
C(IJ_CODE, Treatment('ROS'))[T.CMG] | -0.8440 | 0.169 | -4.998 | 0.000 | -1.175 | -0.513 |
C(IJ_CODE, Treatment('ROS'))[T.CMH] | 0.4059 | 0.079 | 5.120 | 0.000 | 0.251 | 0.561 |
C(IJ_CODE, Treatment('ROS'))[T.CMR] | -0.3523 | 0.081 | -4.326 | 0.000 | -0.512 | -0.193 |
C(IJ_CODE, Treatment('ROS'))[T.CMW] | 1.3187 | 0.194 | 6.795 | 0.000 | 0.938 | 1.699 |
C(IJ_CODE, Treatment('ROS'))[T.CMZ] | -0.4522 | 0.089 | -5.104 | 0.000 | -0.626 | -0.279 |
C(IJ_CODE, Treatment('ROS'))[T.CRH] | -0.5533 | 0.090 | -6.156 | 0.000 | -0.729 | -0.377 |
C(IJ_CODE, Treatment('ROS'))[T.CSG] | 0.8985 | 0.115 | 7.834 | 0.000 | 0.674 | 1.123 |
C(IJ_CODE, Treatment('ROS'))[T.CYG] | 0.0753 | 0.125 | 0.604 | 0.546 | -0.169 | 0.320 |
C(IJ_CODE, Treatment('ROS'))[T.DA] | 0.2814 | 0.095 | 2.964 | 0.003 | 0.095 | 0.468 |
C(IJ_CODE, Treatment('ROS'))[T.DAL] | 0.5449 | 0.162 | 3.356 | 0.001 | 0.227 | 0.863 |
C(IJ_CODE, Treatment('ROS'))[T.DAM] | 0.0052 | 0.107 | 0.048 | 0.962 | -0.204 | 0.215 |
C(IJ_CODE, Treatment('ROS'))[T.DAR] | -0.0532 | 0.099 | -0.540 | 0.589 | -0.246 | 0.140 |
C(IJ_CODE, Treatment('ROS'))[T.DB] | -0.7022 | 0.116 | -6.067 | 0.000 | -0.929 | -0.475 |
C(IJ_CODE, Treatment('ROS'))[T.DBS] | 1.0389 | 0.061 | 17.008 | 0.000 | 0.919 | 1.159 |
C(IJ_CODE, Treatment('ROS'))[T.DCA] | -0.0816 | 0.079 | -1.030 | 0.303 | -0.237 | 0.074 |
C(IJ_CODE, Treatment('ROS'))[T.DDB] | 0.0133 | 0.074 | 0.180 | 0.857 | -0.131 | 0.158 |
C(IJ_CODE, Treatment('ROS'))[T.DDS] | -0.4187 | 0.084 | -4.959 | 0.000 | -0.584 | -0.253 |
C(IJ_CODE, Treatment('ROS'))[T.DHP] | -0.4297 | 0.138 | -3.124 | 0.002 | -0.699 | -0.160 |
C(IJ_CODE, Treatment('ROS'))[T.DHS] | -1.2996 | 0.096 | -13.589 | 0.000 | -1.487 | -1.112 |
C(IJ_CODE, Treatment('ROS'))[T.DJC] | 0.1903 | 0.112 | 1.694 | 0.090 | -0.030 | 0.410 |
C(IJ_CODE, Treatment('ROS'))[T.DK1] | -0.1912 | 0.122 | -1.564 | 0.118 | -0.431 | 0.048 |
C(IJ_CODE, Treatment('ROS'))[T.DKG] | -1.3977 | 0.156 | -8.957 | 0.000 | -1.704 | -1.092 |
C(IJ_CODE, Treatment('ROS'))[T.DL] | -0.4975 | 0.064 | -7.724 | 0.000 | -0.624 | -0.371 |
C(IJ_CODE, Treatment('ROS'))[T.DLL] | 0.2095 | 0.106 | 1.977 | 0.048 | 0.002 | 0.417 |
C(IJ_CODE, Treatment('ROS'))[T.DLM] | 0.8285 | 0.078 | 10.565 | 0.000 | 0.675 | 0.982 |
C(IJ_CODE, Treatment('ROS'))[T.DMB] | 0.4779 | 0.166 | 2.873 | 0.004 | 0.152 | 0.804 |
C(IJ_CODE, Treatment('ROS'))[T.DML] | -0.2921 | 0.065 | -4.516 | 0.000 | -0.419 | -0.165 |
C(IJ_CODE, Treatment('ROS'))[T.DNS] | 1.2023 | 0.068 | 17.792 | 0.000 | 1.070 | 1.335 |
C(IJ_CODE, Treatment('ROS'))[T.DRH] | -0.3367 | 0.136 | -2.482 | 0.013 | -0.603 | -0.071 |
C(IJ_CODE, Treatment('ROS'))[T.DRJ] | 0.1973 | 0.163 | 1.209 | 0.227 | -0.123 | 0.517 |
C(IJ_CODE, Treatment('ROS'))[T.DRS] | 0.1822 | 0.119 | 1.533 | 0.125 | -0.051 | 0.415 |
C(IJ_CODE, Treatment('ROS'))[T.DVF] | -1.0206 | 0.094 | -10.872 | 0.000 | -1.205 | -0.837 |
C(IJ_CODE, Treatment('ROS'))[T.DWC] | -0.0845 | 0.074 | -1.144 | 0.253 | -0.229 | 0.060 |
C(IJ_CODE, Treatment('ROS'))[T.DWE] | -0.7168 | 0.122 | -5.854 | 0.000 | -0.957 | -0.477 |
C(IJ_CODE, Treatment('ROS'))[T.DWT] | 0.8469 | 0.098 | 8.673 | 0.000 | 0.655 | 1.038 |
C(IJ_CODE, Treatment('ROS'))[T.EAH] | -0.9363 | 0.093 | -10.073 | 0.000 | -1.118 | -0.754 |
C(IJ_CODE, Treatment('ROS'))[T.EAK] | 0.2622 | 0.103 | 2.550 | 0.011 | 0.061 | 0.464 |
C(IJ_CODE, Treatment('ROS'))[T.EAL] | 1.2234 | 0.064 | 19.035 | 0.000 | 1.097 | 1.349 |
C(IJ_CODE, Treatment('ROS'))[T.EBW] | -0.9960 | 0.063 | -15.886 | 0.000 | -1.119 | -0.873 |
C(IJ_CODE, Treatment('ROS'))[T.ECC] | 0.3453 | 0.138 | 2.498 | 0.013 | 0.074 | 0.616 |
C(IJ_CODE, Treatment('ROS'))[T.ECK] | 0.4608 | 0.089 | 5.170 | 0.000 | 0.286 | 0.635 |
C(IJ_CODE, Treatment('ROS'))[T.EDS] | 0.9592 | 0.145 | 6.625 | 0.000 | 0.675 | 1.243 |
C(IJ_CODE, Treatment('ROS'))[T.EGL] | -0.0877 | 0.134 | -0.656 | 0.512 | -0.350 | 0.175 |
C(IJ_CODE, Treatment('ROS'))[T.ELY] | 0.4238 | 0.124 | 3.424 | 0.001 | 0.181 | 0.666 |
C(IJ_CODE, Treatment('ROS'))[T.EM2] | -0.2368 | 0.182 | -1.303 | 0.192 | -0.593 | 0.119 |
C(IJ_CODE, Treatment('ROS'))[T.EMS] | -0.1844 | 0.068 | -2.723 | 0.006 | -0.317 | -0.052 |
C(IJ_CODE, Treatment('ROS'))[T.EP] | -0.1018 | 0.095 | -1.070 | 0.285 | -0.288 | 0.085 |
C(IJ_CODE, Treatment('ROS'))[T.EPD] | 1.1608 | 0.103 | 11.265 | 0.000 | 0.959 | 1.363 |
C(IJ_CODE, Treatment('ROS'))[T.ERH] | 0.2855 | 0.097 | 2.934 | 0.003 | 0.095 | 0.476 |
C(IJ_CODE, Treatment('ROS'))[T.ERK] | 0.0694 | 0.071 | 0.974 | 0.330 | -0.070 | 0.209 |
C(IJ_CODE, Treatment('ROS'))[T.ERT] | 0.4745 | 0.146 | 3.244 | 0.001 | 0.188 | 0.761 |
C(IJ_CODE, Treatment('ROS'))[T.ET] | 0.0136 | 0.115 | 0.118 | 0.906 | -0.212 | 0.240 |
C(IJ_CODE, Treatment('ROS'))[T.FGL] | 1.1772 | 0.082 | 14.316 | 0.000 | 1.016 | 1.338 |
C(IJ_CODE, Treatment('ROS'))[T.FLC] | 0.1412 | 0.107 | 1.323 | 0.186 | -0.068 | 0.350 |
C(IJ_CODE, Treatment('ROS'))[T.FMT] | -0.1419 | 0.085 | -1.662 | 0.096 | -0.309 | 0.025 |
C(IJ_CODE, Treatment('ROS'))[T.GA] | 0.6913 | 0.077 | 8.934 | 0.000 | 0.540 | 0.843 |
C(IJ_CODE, Treatment('ROS'))[T.GAS] | -1.0004 | 0.171 | -5.845 | 0.000 | -1.336 | -0.665 |
C(IJ_CODE, Treatment('ROS'))[T.GBP] | 0.2344 | 0.105 | 2.227 | 0.026 | 0.028 | 0.441 |
C(IJ_CODE, Treatment('ROS'))[T.GCV] | -0.1292 | 0.063 | -2.056 | 0.040 | -0.252 | -0.006 |
C(IJ_CODE, Treatment('ROS'))[T.GDB] | -2.1635 | 0.111 | -19.466 | 0.000 | -2.381 | -1.946 |
C(IJ_CODE, Treatment('ROS'))[T.GDM] | -0.4260 | 0.110 | -3.857 | 0.000 | -0.642 | -0.210 |
C(IJ_CODE, Treatment('ROS'))[T.GEE] | -1.7060 | 0.098 | -17.440 | 0.000 | -1.898 | -1.514 |
C(IJ_CODE, Treatment('ROS'))[T.GLB] | 0.8280 | 0.147 | 5.651 | 0.000 | 0.541 | 1.115 |
C(IJ_CODE, Treatment('ROS'))[T.GMP] | -2.1079 | 0.148 | -14.288 | 0.000 | -2.397 | -1.819 |
C(IJ_CODE, Treatment('ROS'))[T.GMR] | -0.4729 | 0.124 | -3.803 | 0.000 | -0.717 | -0.229 |
C(IJ_CODE, Treatment('ROS'))[T.GNB] | 0.3013 | 0.130 | 2.315 | 0.021 | 0.046 | 0.556 |
C(IJ_CODE, Treatment('ROS'))[T.GPM] | -0.5093 | 0.104 | -4.877 | 0.000 | -0.714 | -0.305 |
C(IJ_CODE, Treatment('ROS'))[T.GRB] | -0.2006 | 0.145 | -1.387 | 0.166 | -0.484 | 0.083 |
C(IJ_CODE, Treatment('ROS'))[T.GTC] | 1.1741 | 0.063 | 18.774 | 0.000 | 1.052 | 1.297 |
C(IJ_CODE, Treatment('ROS'))[T.GTG] | 0.4122 | 0.080 | 5.152 | 0.000 | 0.255 | 0.569 |
C(IJ_CODE, Treatment('ROS'))[T.GWP] | 0.7454 | 0.101 | 7.392 | 0.000 | 0.548 | 0.943 |
C(IJ_CODE, Treatment('ROS'))[T.GWR] | -0.9676 | 0.180 | -5.379 | 0.000 | -1.320 | -0.615 |
C(IJ_CODE, Treatment('ROS'))[T.HAR] | -2.6411 | 0.140 | -18.833 | 0.000 | -2.916 | -2.366 |
C(IJ_CODE, Treatment('ROS'))[T.HEA] | -1.3087 | 0.148 | -8.863 | 0.000 | -1.598 | -1.019 |
C(IJ_CODE, Treatment('ROS'))[T.HJS] | 0.9937 | 0.063 | 15.846 | 0.000 | 0.871 | 1.117 |
C(IJ_CODE, Treatment('ROS'))[T.HKM] | 0.3544 | 0.106 | 3.330 | 0.001 | 0.146 | 0.563 |
C(IJ_CODE, Treatment('ROS'))[T.HLG] | -0.0170 | 0.109 | -0.156 | 0.876 | -0.231 | 0.197 |
C(IJ_CODE, Treatment('ROS'))[T.HLK] | -0.2637 | 0.093 | -2.829 | 0.005 | -0.446 | -0.081 |
C(IJ_CODE, Treatment('ROS'))[T.HO] | -0.3731 | 0.073 | -5.146 | 0.000 | -0.515 | -0.231 |
C(IJ_CODE, Treatment('ROS'))[T.HPI] | -0.1497 | 0.076 | -1.968 | 0.049 | -0.299 | -0.001 |
C(IJ_CODE, Treatment('ROS'))[T.HSD] | 0.4090 | 0.088 | 4.622 | 0.000 | 0.236 | 0.582 |
C(IJ_CODE, Treatment('ROS'))[T.HVW] | -1.0893 | 0.158 | -6.883 | 0.000 | -1.399 | -0.779 |
C(IJ_CODE, Treatment('ROS'))[T.IBB] | -0.3933 | 0.076 | -5.183 | 0.000 | -0.542 | -0.245 |
C(IJ_CODE, Treatment('ROS'))[T.ICD] | 2.0892 | 0.187 | 11.194 | 0.000 | 1.723 | 2.455 |
C(IJ_CODE, Treatment('ROS'))[T.IEB] | 0.0304 | 0.071 | 0.431 | 0.666 | -0.108 | 0.169 |
C(IJ_CODE, Treatment('ROS'))[T.IKH] | 0.2705 | 0.096 | 2.830 | 0.005 | 0.083 | 0.458 |
C(IJ_CODE, Treatment('ROS'))[T.ILD] | -0.2433 | 0.198 | -1.230 | 0.219 | -0.631 | 0.144 |
C(IJ_CODE, Treatment('ROS'))[T.IPF] | 0.4286 | 0.090 | 4.737 | 0.000 | 0.251 | 0.606 |
C(IJ_CODE, Treatment('ROS'))[T.IS] | -0.4861 | 0.115 | -4.244 | 0.000 | -0.711 | -0.262 |
C(IJ_CODE, Treatment('ROS'))[T.IW] | 0.9564 | 0.112 | 8.537 | 0.000 | 0.737 | 1.176 |
C(IJ_CODE, Treatment('ROS'))[T.JAD] | 0.2361 | 0.124 | 1.910 | 0.056 | -0.006 | 0.478 |
C(IJ_CODE, Treatment('ROS'))[T.JB] | 0.6628 | 0.064 | 10.395 | 0.000 | 0.538 | 0.788 |
C(IJ_CODE, Treatment('ROS'))[T.JBC] | 0.2248 | 0.068 | 3.301 | 0.001 | 0.091 | 0.358 |
C(IJ_CODE, Treatment('ROS'))[T.JBL] | -0.5429 | 0.155 | -3.504 | 0.000 | -0.847 | -0.239 |
C(IJ_CODE, Treatment('ROS'))[T.JBV] | 0.2937 | 0.102 | 2.891 | 0.004 | 0.095 | 0.493 |
C(IJ_CODE, Treatment('ROS'))[T.JCA] | -0.8251 | 0.142 | -5.813 | 0.000 | -1.103 | -0.547 |
C(IJ_CODE, Treatment('ROS'))[T.JCL] | -1.5033 | 0.186 | -8.078 | 0.000 | -1.868 | -1.139 |
C(IJ_CODE, Treatment('ROS'))[T.JCS] | 0.6225 | 0.096 | 6.492 | 0.000 | 0.435 | 0.810 |
C(IJ_CODE, Treatment('ROS'))[T.JCW] | 1.1855 | 0.096 | 12.293 | 0.000 | 0.997 | 1.375 |
C(IJ_CODE, Treatment('ROS'))[T.JD] | 0.3345 | 0.123 | 2.714 | 0.007 | 0.093 | 0.576 |
C(IJ_CODE, Treatment('ROS'))[T.JDC] | -0.8744 | 0.105 | -8.360 | 0.000 | -1.079 | -0.669 |
C(IJ_CODE, Treatment('ROS'))[T.JDD] | -0.4166 | 0.063 | -6.585 | 0.000 | -0.541 | -0.293 |
C(IJ_CODE, Treatment('ROS'))[T.JDL] | 0.0320 | 0.073 | 0.438 | 0.661 | -0.111 | 0.175 |
C(IJ_CODE, Treatment('ROS'))[T.JDP] | -1.1107 | 0.132 | -8.403 | 0.000 | -1.370 | -0.852 |
C(IJ_CODE, Treatment('ROS'))[T.JDT] | -0.2847 | 0.094 | -3.024 | 0.002 | -0.469 | -0.100 |
C(IJ_CODE, Treatment('ROS'))[T.JEB] | 0.5289 | 0.065 | 8.156 | 0.000 | 0.402 | 0.656 |
C(IJ_CODE, Treatment('ROS'))[T.JFG] | 0.1563 | 0.084 | 1.851 | 0.064 | -0.009 | 0.322 |
C(IJ_CODE, Treatment('ROS'))[T.JFW] | -0.0901 | 0.069 | -1.310 | 0.190 | -0.225 | 0.045 |
C(IJ_CODE, Treatment('ROS'))[T.JG] | -0.4782 | 0.065 | -7.349 | 0.000 | -0.606 | -0.351 |
C(IJ_CODE, Treatment('ROS'))[T.JHD] | -0.2026 | 0.086 | -2.365 | 0.018 | -0.371 | -0.035 |
C(IJ_CODE, Treatment('ROS'))[T.JIP] | 1.2224 | 0.178 | 6.878 | 0.000 | 0.874 | 1.571 |
C(IJ_CODE, Treatment('ROS'))[T.JLA] | -0.2109 | 0.123 | -1.716 | 0.086 | -0.452 | 0.030 |
C(IJ_CODE, Treatment('ROS'))[T.JLB] | -0.1917 | 0.114 | -1.680 | 0.093 | -0.415 | 0.032 |
C(IJ_CODE, Treatment('ROS'))[T.JLG] | 0.4223 | 0.093 | 4.557 | 0.000 | 0.241 | 0.604 |
C(IJ_CODE, Treatment('ROS'))[T.JLP] | 1.0091 | 0.084 | 12.080 | 0.000 | 0.845 | 1.173 |
C(IJ_CODE, Treatment('ROS'))[T.JLR] | -1.0412 | 0.082 | -12.680 | 0.000 | -1.202 | -0.880 |
C(IJ_CODE, Treatment('ROS'))[T.JMB] | 0.1278 | 0.082 | 1.560 | 0.119 | -0.033 | 0.288 |
C(IJ_CODE, Treatment('ROS'))[T.JMG] | -0.3954 | 0.124 | -3.182 | 0.001 | -0.639 | -0.152 |
C(IJ_CODE, Treatment('ROS'))[T.JMM] | -0.0868 | 0.096 | -0.904 | 0.366 | -0.275 | 0.101 |
C(IJ_CODE, Treatment('ROS'))[T.JN] | -0.2700 | 0.130 | -2.082 | 0.037 | -0.524 | -0.016 |
C(IJ_CODE, Treatment('ROS'))[T.JO] | -0.7014 | 0.067 | -10.396 | 0.000 | -0.834 | -0.569 |
C(IJ_CODE, Treatment('ROS'))[T.JPL] | -1.2726 | 0.163 | -7.792 | 0.000 | -1.593 | -0.952 |
C(IJ_CODE, Treatment('ROS'))[T.JPV] | -0.2340 | 0.124 | -1.891 | 0.059 | -0.477 | 0.008 |
C(IJ_CODE, Treatment('ROS'))[T.JRF] | -0.1143 | 0.092 | -1.248 | 0.212 | -0.294 | 0.065 |
C(IJ_CODE, Treatment('ROS'))[T.JRO] | 1.4401 | 0.120 | 11.967 | 0.000 | 1.204 | 1.676 |
C(IJ_CODE, Treatment('ROS'))[T.JS] | -0.4560 | 0.097 | -4.693 | 0.000 | -0.646 | -0.266 |
C(IJ_CODE, Treatment('ROS'))[T.JSC] | -0.2029 | 0.077 | -2.628 | 0.009 | -0.354 | -0.052 |
C(IJ_CODE, Treatment('ROS'))[T.JSL] | -1.0638 | 0.188 | -5.646 | 0.000 | -1.433 | -0.694 |
C(IJ_CODE, Treatment('ROS'))[T.JTH] | -0.7453 | 0.121 | -6.167 | 0.000 | -0.982 | -0.508 |
C(IJ_CODE, Treatment('ROS'))[T.JVC] | -0.4352 | 0.092 | -4.705 | 0.000 | -0.617 | -0.254 |
C(IJ_CODE, Treatment('ROS'))[T.JVJ] | 0.9444 | 0.145 | 6.517 | 0.000 | 0.660 | 1.228 |
C(IJ_CODE, Treatment('ROS'))[T.JWH] | -0.2836 | 0.130 | -2.181 | 0.029 | -0.538 | -0.029 |
C(IJ_CODE, Treatment('ROS'))[T.JWR] | 1.1191 | 0.124 | 9.007 | 0.000 | 0.876 | 1.363 |
C(IJ_CODE, Treatment('ROS'))[T.JWS] | -0.0964 | 0.162 | -0.594 | 0.552 | -0.414 | 0.222 |
C(IJ_CODE, Treatment('ROS'))[T.KAB] | -0.1215 | 0.096 | -1.263 | 0.207 | -0.310 | 0.067 |
C(IJ_CODE, Treatment('ROS'))[T.KC] | -0.7144 | 0.056 | -12.667 | 0.000 | -0.825 | -0.604 |
C(IJ_CODE, Treatment('ROS'))[T.KCW] | -1.1074 | 0.091 | -12.120 | 0.000 | -1.287 | -0.928 |
C(IJ_CODE, Treatment('ROS'))[T.KGB] | -0.4454 | 0.071 | -6.279 | 0.000 | -0.584 | -0.306 |
C(IJ_CODE, Treatment('ROS'))[T.KJ] | 0.7758 | 0.072 | 10.797 | 0.000 | 0.635 | 0.917 |
C(IJ_CODE, Treatment('ROS'))[T.KW] | -0.2815 | 0.126 | -2.234 | 0.025 | -0.529 | -0.035 |
C(IJ_CODE, Treatment('ROS'))[T.KWO] | 0.0889 | 0.123 | 0.725 | 0.468 | -0.151 | 0.329 |
C(IJ_CODE, Treatment('ROS'))[T.LB7] | -0.0339 | 0.088 | -0.387 | 0.698 | -0.206 | 0.138 |
C(IJ_CODE, Treatment('ROS'))[T.LD] | -0.0051 | 0.082 | -0.062 | 0.951 | -0.166 | 0.155 |
C(IJ_CODE, Treatment('ROS'))[T.LIS] | 0.5184 | 0.090 | 5.760 | 0.000 | 0.342 | 0.695 |
C(IJ_CODE, Treatment('ROS'))[T.LJM] | -0.4339 | 0.078 | -5.549 | 0.000 | -0.587 | -0.281 |
C(IJ_CODE, Treatment('ROS'))[T.LLR] | 0.9469 | 0.078 | 12.075 | 0.000 | 0.793 | 1.101 |
C(IJ_CODE, Treatment('ROS'))[T.LME] | -0.2705 | 0.083 | -3.253 | 0.001 | -0.433 | -0.108 |
C(IJ_CODE, Treatment('ROS'))[T.LND] | 0.4301 | 0.084 | 5.092 | 0.000 | 0.265 | 0.596 |
C(IJ_CODE, Treatment('ROS'))[T.LOB] | 0.4692 | 0.070 | 6.656 | 0.000 | 0.331 | 0.607 |
C(IJ_CODE, Treatment('ROS'))[T.LOC] | -1.1217 | 0.094 | -11.914 | 0.000 | -1.306 | -0.937 |
C(IJ_CODE, Treatment('ROS'))[T.LRJ] | 0.7615 | 0.101 | 7.572 | 0.000 | 0.564 | 0.959 |
C(IJ_CODE, Treatment('ROS'))[T.LSF] | 0.2115 | 0.122 | 1.730 | 0.084 | -0.028 | 0.451 |
C(IJ_CODE, Treatment('ROS'))[T.LSG] | 0.5040 | 0.078 | 6.441 | 0.000 | 0.351 | 0.657 |
C(IJ_CODE, Treatment('ROS'))[T.LTB] | -0.2609 | 0.062 | -4.217 | 0.000 | -0.382 | -0.140 |
C(IJ_CODE, Treatment('ROS'))[T.MAT] | 0.2352 | 0.108 | 2.172 | 0.030 | 0.023 | 0.447 |
C(IJ_CODE, Treatment('ROS'))[T.MB] | 0.3074 | 0.108 | 2.834 | 0.005 | 0.095 | 0.520 |
C(IJ_CODE, Treatment('ROS'))[T.MCG] | -0.0396 | 0.100 | -0.395 | 0.693 | -0.236 | 0.157 |
C(IJ_CODE, Treatment('ROS'))[T.MCH] | 0.1048 | 0.067 | 1.555 | 0.120 | -0.027 | 0.237 |
C(IJ_CODE, Treatment('ROS'))[T.MEN] | 1.4050 | 0.125 | 11.280 | 0.000 | 1.161 | 1.649 |
C(IJ_CODE, Treatment('ROS'))[T.MFH] | -1.3296 | 0.072 | -18.507 | 0.000 | -1.470 | -1.189 |
C(IJ_CODE, Treatment('ROS'))[T.MG1] | -2.2438 | 0.182 | -12.296 | 0.000 | -2.601 | -1.886 |
C(IJ_CODE, Treatment('ROS'))[T.MGK] | 1.1290 | 0.110 | 10.260 | 0.000 | 0.913 | 1.345 |
C(IJ_CODE, Treatment('ROS'))[T.MGM] | -1.0052 | 0.122 | -8.226 | 0.000 | -1.245 | -0.766 |
C(IJ_CODE, Treatment('ROS'))[T.MH] | 1.0570 | 0.082 | 12.844 | 0.000 | 0.896 | 1.218 |
C(IJ_CODE, Treatment('ROS'))[T.MHB] | 0.9792 | 0.110 | 8.898 | 0.000 | 0.764 | 1.195 |
C(IJ_CODE, Treatment('ROS'))[T.MHM] | -0.3551 | 0.109 | -3.267 | 0.001 | -0.568 | -0.142 |
C(IJ_CODE, Treatment('ROS'))[T.MJD] | 0.3688 | 0.092 | 4.000 | 0.000 | 0.188 | 0.550 |
C(IJ_CODE, Treatment('ROS'))[T.MJT] | 0.2330 | 0.079 | 2.951 | 0.003 | 0.078 | 0.388 |
C(IJ_CODE, Treatment('ROS'))[T.MJY] | -0.2097 | 0.109 | -1.925 | 0.054 | -0.423 | 0.004 |
C(IJ_CODE, Treatment('ROS'))[T.MKM] | -0.1176 | 0.075 | -1.574 | 0.115 | -0.264 | 0.029 |
C(IJ_CODE, Treatment('ROS'))[T.MKN] | -0.9104 | 0.100 | -9.081 | 0.000 | -1.107 | -0.714 |
C(IJ_CODE, Treatment('ROS'))[T.MLE] | -0.2901 | 0.098 | -2.947 | 0.003 | -0.483 | -0.097 |
C(IJ_CODE, Treatment('ROS'))[T.MLY] | 1.0938 | 0.112 | 9.753 | 0.000 | 0.874 | 1.314 |
C(IJ_CODE, Treatment('ROS'))[T.MMC] | 0.6014 | 0.085 | 7.096 | 0.000 | 0.435 | 0.768 |
C(IJ_CODE, Treatment('ROS'))[T.MMF] | -0.0048 | 0.129 | -0.037 | 0.970 | -0.258 | 0.249 |
C(IJ_CODE, Treatment('ROS'))[T.MML] | -0.1826 | 0.102 | -1.792 | 0.073 | -0.382 | 0.017 |
C(IJ_CODE, Treatment('ROS'))[T.MMT] | 0.5446 | 0.094 | 5.775 | 0.000 | 0.360 | 0.729 |
C(IJ_CODE, Treatment('ROS'))[T.MOS] | 0.8935 | 0.094 | 9.465 | 0.000 | 0.708 | 1.079 |
C(IJ_CODE, Treatment('ROS'))[T.MPB] | -1.3318 | 0.111 | -11.977 | 0.000 | -1.550 | -1.114 |
C(IJ_CODE, Treatment('ROS'))[T.MR] | -1.4740 | 0.204 | -7.220 | 0.000 | -1.874 | -1.074 |
C(IJ_CODE, Treatment('ROS'))[T.MRR] | 0.0397 | 0.093 | 0.427 | 0.670 | -0.143 | 0.222 |
C(IJ_CODE, Treatment('ROS'))[T.MS1] | -2.6524 | 0.220 | -12.071 | 0.000 | -3.083 | -2.222 |
C(IJ_CODE, Treatment('ROS'))[T.MSY] | -0.6600 | 0.081 | -8.159 | 0.000 | -0.819 | -0.501 |
C(IJ_CODE, Treatment('ROS'))[T.MT] | -0.3396 | 0.129 | -2.625 | 0.009 | -0.593 | -0.086 |
C(IJ_CODE, Treatment('ROS'))[T.MWK] | -0.8217 | 0.119 | -6.915 | 0.000 | -1.055 | -0.589 |
C(IJ_CODE, Treatment('ROS'))[T.MWS] | -0.0266 | 0.098 | -0.272 | 0.786 | -0.218 | 0.165 |
C(IJ_CODE, Treatment('ROS'))[T.NAF] | 0.5887 | 0.077 | 7.610 | 0.000 | 0.437 | 0.740 |
C(IJ_CODE, Treatment('ROS'))[T.NB] | 1.7849 | 0.068 | 26.124 | 0.000 | 1.651 | 1.919 |
C(IJ_CODE, Treatment('ROS'))[T.NK] | 0.2112 | 0.143 | 1.479 | 0.139 | -0.069 | 0.491 |
C(IJ_CODE, Treatment('ROS'))[T.NRM] | -0.1072 | 0.068 | -1.581 | 0.114 | -0.240 | 0.026 |
C(IJ_CODE, Treatment('ROS'))[T.ODS] | -1.2603 | 0.170 | -7.420 | 0.000 | -1.593 | -0.927 |
C(IJ_CODE, Treatment('ROS'))[T.OJB] | -0.7417 | 0.089 | -8.305 | 0.000 | -0.917 | -0.567 |
C(IJ_CODE, Treatment('ROS'))[T.OLC] | 1.6656 | 0.112 | 14.924 | 0.000 | 1.447 | 1.884 |
C(IJ_CODE, Treatment('ROS'))[T.OMB] | 0.6420 | 0.098 | 6.550 | 0.000 | 0.450 | 0.834 |
C(IJ_CODE, Treatment('ROS'))[T.PAM] | 0.1901 | 0.066 | 2.862 | 0.004 | 0.060 | 0.320 |
C(IJ_CODE, Treatment('ROS'))[T.PAR] | 1.4008 | 0.066 | 21.326 | 0.000 | 1.272 | 1.530 |
C(IJ_CODE, Treatment('ROS'))[T.PAW] | 0.3149 | 0.075 | 4.219 | 0.000 | 0.169 | 0.461 |
C(IJ_CODE, Treatment('ROS'))[T.PD1] | 1.5684 | 0.138 | 11.362 | 0.000 | 1.298 | 1.839 |
C(IJ_CODE, Treatment('ROS'))[T.PDF] | -0.1243 | 0.063 | -1.970 | 0.049 | -0.248 | -0.001 |
C(IJ_CODE, Treatment('ROS'))[T.PDM] | 0.5282 | 0.129 | 4.108 | 0.000 | 0.276 | 0.780 |
C(IJ_CODE, Treatment('ROS'))[T.PDO] | 1.0556 | 0.135 | 7.803 | 0.000 | 0.790 | 1.321 |
C(IJ_CODE, Treatment('ROS'))[T.PG] | 0.5919 | 0.116 | 5.087 | 0.000 | 0.364 | 0.820 |
C(IJ_CODE, Treatment('ROS'))[T.PJ] | -0.0719 | 0.138 | -0.521 | 0.602 | -0.342 | 0.198 |
C(IJ_CODE, Treatment('ROS'))[T.PJC] | 0.0912 | 0.102 | 0.896 | 0.370 | -0.108 | 0.291 |
C(IJ_CODE, Treatment('ROS'))[T.PJM] | -1.8175 | 0.184 | -9.875 | 0.000 | -2.178 | -1.457 |
C(IJ_CODE, Treatment('ROS'))[T.PKM] | -2.3267 | 0.165 | -14.100 | 0.000 | -2.650 | -2.003 |
C(IJ_CODE, Treatment('ROS'))[T.PLJ] | -1.3421 | 0.145 | -9.280 | 0.000 | -1.626 | -1.059 |
C(IJ_CODE, Treatment('ROS'))[T.PLM] | 1.2123 | 0.061 | 19.727 | 0.000 | 1.092 | 1.333 |
C(IJ_CODE, Treatment('ROS'))[T.PMG] | 0.7396 | 0.091 | 8.123 | 0.000 | 0.561 | 0.918 |
C(IJ_CODE, Treatment('ROS'))[T.PMM] | 2.1254 | 0.072 | 29.338 | 0.000 | 1.983 | 2.267 |
C(IJ_CODE, Treatment('ROS'))[T.PMS] | -1.2417 | 0.148 | -8.409 | 0.000 | -1.531 | -0.952 |
C(IJ_CODE, Treatment('ROS'))[T.PMT] | -1.4770 | 0.199 | -7.411 | 0.000 | -1.868 | -1.086 |
C(IJ_CODE, Treatment('ROS'))[T.PRM] | 0.8959 | 0.136 | 6.594 | 0.000 | 0.630 | 1.162 |
C(IJ_CODE, Treatment('ROS'))[T.PS] | -0.0319 | 0.096 | -0.331 | 0.741 | -0.221 | 0.157 |
C(IJ_CODE, Treatment('ROS'))[T.PSL] | -0.3446 | 0.078 | -4.446 | 0.000 | -0.497 | -0.193 |
C(IJ_CODE, Treatment('ROS'))[T.PSS] | 1.4075 | 0.139 | 10.147 | 0.000 | 1.136 | 1.679 |
C(IJ_CODE, Treatment('ROS'))[T.PTM] | 0.1766 | 0.117 | 1.505 | 0.132 | -0.053 | 0.407 |
C(IJ_CODE, Treatment('ROS'))[T.PTW] | -0.0249 | 0.084 | -0.296 | 0.767 | -0.190 | 0.140 |
C(IJ_CODE, Treatment('ROS'))[T.PV] | 0.8428 | 0.110 | 7.638 | 0.000 | 0.627 | 1.059 |
C(IJ_CODE, Treatment('ROS'))[T.PWS] | 0.5016 | 0.092 | 5.458 | 0.000 | 0.321 | 0.682 |
C(IJ_CODE, Treatment('ROS'))[T.QVB] | -0.0978 | 0.091 | -1.073 | 0.283 | -0.277 | 0.081 |
C(IJ_CODE, Treatment('ROS'))[T.RAC] | 1.5378 | 0.116 | 13.307 | 0.000 | 1.311 | 1.764 |
C(IJ_CODE, Treatment('ROS'))[T.RAJ] | 0.2575 | 0.070 | 3.669 | 0.000 | 0.120 | 0.395 |
C(IJ_CODE, Treatment('ROS'))[T.RB] | -0.4009 | 0.102 | -3.932 | 0.000 | -0.601 | -0.201 |
C(IJ_CODE, Treatment('ROS'))[T.RBJ] | 1.4325 | 0.161 | 8.885 | 0.000 | 1.116 | 1.748 |
C(IJ_CODE, Treatment('ROS'))[T.RCH] | -0.5166 | 0.066 | -7.822 | 0.000 | -0.646 | -0.387 |
C(IJ_CODE, Treatment('ROS'))[T.RCP] | -0.4023 | 0.092 | -4.387 | 0.000 | -0.582 | -0.223 |
C(IJ_CODE, Treatment('ROS'))[T.RDM] | 0.4258 | 0.111 | 3.853 | 0.000 | 0.209 | 0.642 |
C(IJ_CODE, Treatment('ROS'))[T.RDN] | -0.8202 | 0.086 | -9.514 | 0.000 | -0.989 | -0.651 |
C(IJ_CODE, Treatment('ROS'))[T.RDV] | -0.3323 | 0.083 | -3.981 | 0.000 | -0.496 | -0.169 |
C(IJ_CODE, Treatment('ROS'))[T.RDW] | 0.3377 | 0.062 | 5.440 | 0.000 | 0.216 | 0.459 |
C(IJ_CODE, Treatment('ROS'))[T.REC] | -0.4335 | 0.121 | -3.589 | 0.000 | -0.670 | -0.197 |
C(IJ_CODE, Treatment('ROS'))[T.REF] | 0.8525 | 0.092 | 9.281 | 0.000 | 0.672 | 1.033 |
C(IJ_CODE, Treatment('ROS'))[T.RFB] | -0.1708 | 0.130 | -1.313 | 0.189 | -0.426 | 0.084 |
C(IJ_CODE, Treatment('ROS'))[T.RGS] | -0.4602 | 0.076 | -6.033 | 0.000 | -0.610 | -0.311 |
C(IJ_CODE, Treatment('ROS'))[T.RHC] | 0.1984 | 0.083 | 2.376 | 0.017 | 0.035 | 0.362 |
C(IJ_CODE, Treatment('ROS'))[T.RHK] | 0.9381 | 0.152 | 6.175 | 0.000 | 0.640 | 1.236 |
C(IJ_CODE, Treatment('ROS'))[T.RJ1] | -1.6959 | 0.157 | -10.791 | 0.000 | -2.004 | -1.388 |
C(IJ_CODE, Treatment('ROS'))[T.RJA] | -0.9516 | 0.119 | -8.015 | 0.000 | -1.184 | -0.719 |
C(IJ_CODE, Treatment('ROS'))[T.RJB] | 0.7770 | 0.101 | 7.696 | 0.000 | 0.579 | 0.975 |
C(IJ_CODE, Treatment('ROS'))[T.RJF] | -0.9414 | 0.067 | -13.966 | 0.000 | -1.074 | -0.809 |
C(IJ_CODE, Treatment('ROS'))[T.RKM] | -1.3698 | 0.111 | -12.394 | 0.000 | -1.586 | -1.153 |
C(IJ_CODE, Treatment('ROS'))[T.RKP] | 0.7454 | 0.123 | 6.045 | 0.000 | 0.504 | 0.987 |
C(IJ_CODE, Treatment('ROS'))[T.RLH] | -0.3131 | 0.090 | -3.473 | 0.001 | -0.490 | -0.136 |
C(IJ_CODE, Treatment('ROS'))[T.RLM] | -0.1065 | 0.114 | -0.931 | 0.352 | -0.331 | 0.118 |
C(IJ_CODE, Treatment('ROS'))[T.RLR] | -0.1213 | 0.081 | -1.502 | 0.133 | -0.280 | 0.037 |
C(IJ_CODE, Treatment('ROS'))[T.RM] | -0.0165 | 0.068 | -0.244 | 0.807 | -0.149 | 0.116 |
C(IJ_CODE, Treatment('ROS'))[T.RMH] | -2.4511 | 0.277 | -8.839 | 0.000 | -2.995 | -1.908 |
C(IJ_CODE, Treatment('ROS'))[T.RPM] | 0.1774 | 0.079 | 2.232 | 0.026 | 0.022 | 0.333 |
C(IJ_CODE, Treatment('ROS'))[T.RPO] | 0.5434 | 0.088 | 6.149 | 0.000 | 0.370 | 0.717 |
C(IJ_CODE, Treatment('ROS'))[T.RR1] | 0.4289 | 0.116 | 3.693 | 0.000 | 0.201 | 0.656 |
C(IJ_CODE, Treatment('ROS'))[T.RRO] | -1.0971 | 0.096 | -11.441 | 0.000 | -1.285 | -0.909 |
C(IJ_CODE, Treatment('ROS'))[T.RS] | 0.0454 | 0.066 | 0.686 | 0.493 | -0.084 | 0.175 |
C(IJ_CODE, Treatment('ROS'))[T.RSH] | -0.8227 | 0.122 | -6.738 | 0.000 | -1.062 | -0.583 |
C(IJ_CODE, Treatment('ROS'))[T.RW] | -0.4384 | 0.070 | -6.277 | 0.000 | -0.575 | -0.302 |
C(IJ_CODE, Treatment('ROS'))[T.RWK] | -1.4959 | 0.114 | -13.113 | 0.000 | -1.719 | -1.272 |
C(IJ_CODE, Treatment('ROS'))[T.RY] | -0.1920 | 0.080 | -2.398 | 0.016 | -0.349 | -0.035 |
C(IJ_CODE, Treatment('ROS'))[T.RZA] | 1.1597 | 0.085 | 13.627 | 0.000 | 0.993 | 1.326 |
C(IJ_CODE, Treatment('ROS'))[T.SAM] | 0.3465 | 0.107 | 3.238 | 0.001 | 0.137 | 0.556 |
C(IJ_CODE, Treatment('ROS'))[T.SAS] | -1.8626 | 0.211 | -8.847 | 0.000 | -2.275 | -1.450 |
C(IJ_CODE, Treatment('ROS'))[T.SD] | -1.0931 | 0.138 | -7.934 | 0.000 | -1.363 | -0.823 |
C(IJ_CODE, Treatment('ROS'))[T.SEC] | -0.2917 | 0.102 | -2.852 | 0.004 | -0.492 | -0.091 |
C(IJ_CODE, Treatment('ROS'))[T.SEM] | 0.1552 | 0.063 | 2.467 | 0.014 | 0.032 | 0.279 |
C(IJ_CODE, Treatment('ROS'))[T.SFK] | -0.3700 | 0.073 | -5.095 | 0.000 | -0.512 | -0.228 |
C(IJ_CODE, Treatment('ROS'))[T.SG1] | -1.6933 | 0.147 | -11.549 | 0.000 | -1.981 | -1.406 |
C(IJ_CODE, Treatment('ROS'))[T.SGA] | -0.1510 | 0.063 | -2.387 | 0.017 | -0.275 | -0.027 |
C(IJ_CODE, Treatment('ROS'))[T.SH] | -0.7943 | 0.062 | -12.812 | 0.000 | -0.916 | -0.673 |
C(IJ_CODE, Treatment('ROS'))[T.SHK] | 0.4113 | 0.161 | 2.560 | 0.010 | 0.096 | 0.726 |
C(IJ_CODE, Treatment('ROS'))[T.SLS] | 0.7100 | 0.081 | 8.734 | 0.000 | 0.551 | 0.869 |
C(IJ_CODE, Treatment('ROS'))[T.SMB] | 0.7851 | 0.068 | 11.614 | 0.000 | 0.653 | 0.918 |
C(IJ_CODE, Treatment('ROS'))[T.SRA] | -0.0618 | 0.080 | -0.774 | 0.439 | -0.218 | 0.095 |
C(IJ_CODE, Treatment('ROS'))[T.SRK] | 0.0275 | 0.077 | 0.356 | 0.722 | -0.124 | 0.179 |
C(IJ_CODE, Treatment('ROS'))[T.SSC] | 1.6033 | 0.077 | 20.880 | 0.000 | 1.453 | 1.754 |
C(IJ_CODE, Treatment('ROS'))[T.SSG] | 0.5414 | 0.094 | 5.775 | 0.000 | 0.358 | 0.725 |
C(IJ_CODE, Treatment('ROS'))[T.TAB] | 2.1420 | 0.069 | 30.833 | 0.000 | 2.006 | 2.278 |
C(IJ_CODE, Treatment('ROS'))[T.TC] | -0.4707 | 0.065 | -7.250 | 0.000 | -0.598 | -0.343 |
C(IJ_CODE, Treatment('ROS'))[T.TCR] | -2.5239 | 0.165 | -15.304 | 0.000 | -2.847 | -2.201 |
C(IJ_CODE, Treatment('ROS'))[T.TF] | -0.4885 | 0.084 | -5.823 | 0.000 | -0.653 | -0.324 |
C(IJ_CODE, Treatment('ROS'))[T.TGC] | -1.2230 | 0.156 | -7.842 | 0.000 | -1.529 | -0.917 |
C(IJ_CODE, Treatment('ROS'))[T.TGS] | 0.1269 | 0.092 | 1.379 | 0.168 | -0.053 | 0.307 |
C(IJ_CODE, Treatment('ROS'))[T.THS] | 0.9092 | 0.067 | 13.497 | 0.000 | 0.777 | 1.041 |
C(IJ_CODE, Treatment('ROS'))[T.TJM] | 1.1969 | 0.077 | 15.566 | 0.000 | 1.046 | 1.348 |
C(IJ_CODE, Treatment('ROS'))[T.TMO] | -0.4276 | 0.142 | -3.009 | 0.003 | -0.706 | -0.149 |
C(IJ_CODE, Treatment('ROS'))[T.TMR] | -0.2391 | 0.127 | -1.888 | 0.059 | -0.487 | 0.009 |
C(IJ_CODE, Treatment('ROS'))[T.TNN] | -1.6895 | 0.091 | -18.538 | 0.000 | -1.868 | -1.511 |
C(IJ_CODE, Treatment('ROS'))[T.TPQ] | 0.1780 | 0.081 | 2.209 | 0.027 | 0.020 | 0.336 |
C(IJ_CODE, Treatment('ROS'))[T.TWJ] | -0.2940 | 0.145 | -2.026 | 0.043 | -0.578 | -0.010 |
C(IJ_CODE, Treatment('ROS'))[T.VAW] | 0.9784 | 0.082 | 11.875 | 0.000 | 0.817 | 1.140 |
C(IJ_CODE, Treatment('ROS'))[T.VBM] | -2.4115 | 0.182 | -13.231 | 0.000 | -2.769 | -2.054 |
C(IJ_CODE, Treatment('ROS'))[T.VG] | 0.1725 | 0.042 | 4.100 | 0.000 | 0.090 | 0.255 |
C(IJ_CODE, Treatment('ROS'))[T.VGU] | 1.2307 | 0.065 | 18.847 | 0.000 | 1.103 | 1.359 |
C(IJ_CODE, Treatment('ROS'))[T.VPG] | -0.1052 | 0.112 | -0.941 | 0.347 | -0.324 | 0.114 |
C(IJ_CODE, Treatment('ROS'))[T.VSC] | -0.3907 | 0.120 | -3.268 | 0.001 | -0.625 | -0.156 |
C(IJ_CODE, Treatment('ROS'))[T.WAC] | -1.0164 | 0.121 | -8.383 | 0.000 | -1.254 | -0.779 |
C(IJ_CODE, Treatment('ROS'))[T.WAH] | -0.1025 | 0.106 | -0.964 | 0.335 | -0.311 | 0.106 |
C(IJ_CODE, Treatment('ROS'))[T.WCP] | -0.7176 | 0.084 | -8.555 | 0.000 | -0.882 | -0.553 |
C(IJ_CODE, Treatment('ROS'))[T.WDN] | 0.6675 | 0.104 | 6.410 | 0.000 | 0.463 | 0.872 |
C(IJ_CODE, Treatment('ROS'))[T.WFJ] | -2.1972 | 0.116 | -19.015 | 0.000 | -2.424 | -1.971 |
C(IJ_CODE, Treatment('ROS'))[T.WI] | 0.0135 | 0.081 | 0.166 | 0.868 | -0.146 | 0.173 |
C(IJ_CODE, Treatment('ROS'))[T.WJM] | 0.2426 | 0.084 | 2.882 | 0.004 | 0.078 | 0.408 |
C(IJ_CODE, Treatment('ROS'))[T.WKH] | 0.1092 | 0.104 | 1.054 | 0.292 | -0.094 | 0.312 |
C(IJ_CODE, Treatment('ROS'))[T.WKZ] | -0.1421 | 0.085 | -1.669 | 0.095 | -0.309 | 0.025 |
C(IJ_CODE, Treatment('ROS'))[T.WLN] | 0.8273 | 0.146 | 5.668 | 0.000 | 0.541 | 1.113 |
C(IJ_CODE, Treatment('ROS'))[T.WPJ] | 0.8988 | 0.131 | 6.835 | 0.000 | 0.641 | 1.157 |
C(IJ_CODE, Treatment('ROS'))[T.WS] | 1.2894 | 0.126 | 10.198 | 0.000 | 1.042 | 1.537 |
C(IJ_CODE, Treatment('ROS'))[T.WVW] | 1.7489 | 0.074 | 23.523 | 0.000 | 1.603 | 1.895 |
C(IJ_CODE, Treatment('ROS'))[T.WWS] | 1.1430 | 0.142 | 8.050 | 0.000 | 0.865 | 1.421 |
C(IJ_CODE, Treatment('ROS'))[T.YKA] | -1.2535 | 0.124 | -10.136 | 0.000 | -1.496 | -1.011 |
C(IJ_CODE, Treatment('ROS'))[T.ZZD] | 0.3458 | 0.138 | 2.513 | 0.012 | 0.076 | 0.615 |
C(UPDATE_SITE, Treatment('NYC'))[T.ADL] | -1.0468 | 0.291 | -3.602 | 0.000 | -1.616 | -0.477 |
C(UPDATE_SITE, Treatment('NYC'))[T.AGA] | -0.2214 | 0.157 | -1.407 | 0.159 | -0.530 | 0.087 |
C(UPDATE_SITE, Treatment('NYC'))[T.ATL] | -0.9078 | 0.078 | -11.655 | 0.000 | -1.060 | -0.755 |
C(UPDATE_SITE, Treatment('NYC'))[T.BAL] | 0.2433 | 0.059 | 4.128 | 0.000 | 0.128 | 0.359 |
C(UPDATE_SITE, Treatment('NYC'))[T.BLM] | -0.1341 | 0.105 | -1.277 | 0.202 | -0.340 | 0.072 |
C(UPDATE_SITE, Treatment('NYC'))[T.BOS] | 0.4463 | 0.063 | 7.073 | 0.000 | 0.323 | 0.570 |
C(UPDATE_SITE, Treatment('NYC'))[T.BUF] | 0.2415 | 0.185 | 1.308 | 0.191 | -0.120 | 0.603 |
C(UPDATE_SITE, Treatment('NYC'))[T.CHI] | 0.4426 | 0.071 | 6.225 | 0.000 | 0.303 | 0.582 |
C(UPDATE_SITE, Treatment('NYC'))[T.CHL] | -1.5921 | 0.069 | -23.165 | 0.000 | -1.727 | -1.457 |
C(UPDATE_SITE, Treatment('NYC'))[T.CLE] | -0.0021 | 0.075 | -0.029 | 0.977 | -0.148 | 0.144 |
C(UPDATE_SITE, Treatment('NYC'))[T.DAL] | -0.0598 | 0.073 | -0.821 | 0.411 | -0.202 | 0.083 |
C(UPDATE_SITE, Treatment('NYC'))[T.DEN] | 0.4388 | 0.093 | 4.735 | 0.000 | 0.257 | 0.620 |
C(UPDATE_SITE, Treatment('NYC'))[T.DET] | -0.3473 | 0.062 | -5.594 | 0.000 | -0.469 | -0.226 |
C(UPDATE_SITE, Treatment('NYC'))[T.ELO] | -2.1629 | 0.330 | -6.562 | 0.000 | -2.809 | -1.517 |
C(UPDATE_SITE, Treatment('NYC'))[T.ELP] | 0.9626 | 0.094 | 10.284 | 0.000 | 0.779 | 1.146 |
C(UPDATE_SITE, Treatment('NYC'))[T.ELZ] | -0.2739 | 0.112 | -2.435 | 0.015 | -0.494 | -0.053 |
C(UPDATE_SITE, Treatment('NYC'))[T.HAR] | -0.0098 | 0.082 | -0.119 | 0.905 | -0.170 | 0.150 |
C(UPDATE_SITE, Treatment('NYC'))[T.HLG] | -0.4010 | 0.082 | -4.915 | 0.000 | -0.561 | -0.241 |
C(UPDATE_SITE, Treatment('NYC'))[T.HON] | 0.1479 | 0.164 | 0.901 | 0.368 | -0.174 | 0.470 |
C(UPDATE_SITE, Treatment('NYC'))[T.HOU] | 0.2543 | 0.057 | 4.458 | 0.000 | 0.143 | 0.366 |
C(UPDATE_SITE, Treatment('NYC'))[T.IMP] | 0.0626 | 0.151 | 0.415 | 0.678 | -0.233 | 0.358 |
C(UPDATE_SITE, Treatment('NYC'))[T.KAN] | -0.6447 | 0.076 | -8.527 | 0.000 | -0.793 | -0.497 |
C(UPDATE_SITE, Treatment('NYC'))[T.KRO] | -1.2726 | 0.186 | -6.856 | 0.000 | -1.636 | -0.909 |
C(UPDATE_SITE, Treatment('NYC'))[T.LAD] | -1.6707 | 0.310 | -5.390 | 0.000 | -2.278 | -1.063 |
C(UPDATE_SITE, Treatment('NYC'))[T.LOS] | 0.5924 | 0.037 | 15.825 | 0.000 | 0.519 | 0.666 |
C(UPDATE_SITE, Treatment('NYC'))[T.LOU] | 0.3443 | 0.080 | 4.290 | 0.000 | 0.187 | 0.502 |
C(UPDATE_SITE, Treatment('NYC'))[T.LVG] | -0.0088 | 0.089 | -0.100 | 0.921 | -0.183 | 0.165 |
C(UPDATE_SITE, Treatment('NYC'))[T.MEM] | -0.2239 | 0.063 | -3.567 | 0.000 | -0.347 | -0.101 |
C(UPDATE_SITE, Treatment('NYC'))[T.MIA] | -0.2537 | 0.033 | -7.680 | 0.000 | -0.318 | -0.189 |
C(UPDATE_SITE, Treatment('NYC'))[T.NEW] | -0.5880 | 0.062 | -9.554 | 0.000 | -0.709 | -0.467 |
C(UPDATE_SITE, Treatment('NYC'))[T.NOL] | -0.5615 | 0.115 | -4.867 | 0.000 | -0.788 | -0.335 |
C(UPDATE_SITE, Treatment('NYC'))[T.NYV] | -1.0289 | 0.078 | -13.113 | 0.000 | -1.183 | -0.875 |
C(UPDATE_SITE, Treatment('NYC'))[T.OMA] | -0.0678 | 0.091 | -0.744 | 0.457 | -0.246 | 0.111 |
C(UPDATE_SITE, Treatment('NYC'))[T.ORL] | -0.0341 | 0.044 | -0.767 | 0.443 | -0.121 | 0.053 |
C(UPDATE_SITE, Treatment('NYC'))[T.PHI] | 0.2468 | 0.054 | 4.611 | 0.000 | 0.142 | 0.352 |
C(UPDATE_SITE, Treatment('NYC'))[T.PHO] | 0.6658 | 0.098 | 6.784 | 0.000 | 0.473 | 0.858 |
C(UPDATE_SITE, Treatment('NYC'))[T.PIS] | -1.6370 | 0.254 | -6.450 | 0.000 | -2.134 | -1.140 |
C(UPDATE_SITE, Treatment('NYC'))[T.POO] | 0.0435 | 0.087 | 0.503 | 0.615 | -0.126 | 0.213 |
C(UPDATE_SITE, Treatment('NYC'))[T.SAJ] | -0.0247 | 0.196 | -0.126 | 0.900 | -0.410 | 0.360 |
C(UPDATE_SITE, Treatment('NYC'))[T.SEA] | 0.0190 | 0.045 | 0.422 | 0.673 | -0.069 | 0.107 |
C(UPDATE_SITE, Treatment('NYC'))[T.SFR] | 0.6663 | 0.046 | 14.518 | 0.000 | 0.576 | 0.756 |
C(UPDATE_SITE, Treatment('NYC'))[T.SLC] | -0.6922 | 0.109 | -6.363 | 0.000 | -0.905 | -0.479 |
C(UPDATE_SITE, Treatment('NYC'))[T.SNA] | 0.1758 | 0.076 | 2.315 | 0.021 | 0.027 | 0.325 |
C(UPDATE_SITE, Treatment('NYC'))[T.SND] | -0.5912 | 0.058 | -10.199 | 0.000 | -0.705 | -0.478 |
C(UPDATE_SITE, Treatment('NYC'))[T.TUC] | -0.3801 | 0.124 | -3.057 | 0.002 | -0.624 | -0.136 |
C(UPDATE_SITE, Treatment('NYC'))[T.WAS] | 0.5069 | 0.054 | 9.365 | 0.000 | 0.401 | 0.613 |
C(UPDATE_SITE, Treatment('NYC'))[T.YOR] | -0.6704 | 0.227 | -2.955 | 0.003 | -1.115 | -0.226 |
C(NAT, Treatment('CH'))[T.AF] | 1.0316 | 0.096 | 10.764 | 0.000 | 0.844 | 1.219 |
C(NAT, Treatment('CH'))[T.AG] | 0.1491 | 0.097 | 1.540 | 0.123 | -0.041 | 0.339 |
C(NAT, Treatment('CH'))[T.AL] | 0.1476 | 0.025 | 5.795 | 0.000 | 0.098 | 0.197 |
C(NAT, Treatment('CH'))[T.AM] | 0.0726 | 0.032 | 2.253 | 0.024 | 0.009 | 0.136 |
C(NAT, Treatment('CH'))[T.AR] | -0.5504 | 0.069 | -7.925 | 0.000 | -0.687 | -0.414 |
C(NAT, Treatment('CH'))[T.AZ] | 0.7437 | 0.108 | 6.886 | 0.000 | 0.532 | 0.955 |
C(NAT, Treatment('CH'))[T.BG] | 0.2410 | 0.038 | 6.395 | 0.000 | 0.167 | 0.315 |
C(NAT, Treatment('CH'))[T.BH] | 0.3509 | 0.129 | 2.725 | 0.006 | 0.099 | 0.603 |
C(NAT, Treatment('CH'))[T.BL] | 0.6715 | 0.095 | 7.036 | 0.000 | 0.484 | 0.859 |
C(NAT, Treatment('CH'))[T.BM] | 1.0498 | 0.062 | 16.886 | 0.000 | 0.928 | 1.172 |
C(NAT, Treatment('CH'))[T.BO] | 0.8004 | 0.086 | 9.309 | 0.000 | 0.632 | 0.969 |
C(NAT, Treatment('CH'))[T.BR] | -0.3096 | 0.037 | -8.392 | 0.000 | -0.382 | -0.237 |
C(NAT, Treatment('CH'))[T.BS] | 1.2130 | 0.103 | 11.808 | 0.000 | 1.012 | 1.414 |
C(NAT, Treatment('CH'))[T.BU] | 0.4948 | 0.068 | 7.304 | 0.000 | 0.362 | 0.628 |
C(NAT, Treatment('CH'))[T.BY] | 0.2675 | 0.119 | 2.245 | 0.025 | 0.034 | 0.501 |
C(NAT, Treatment('CH'))[T.BZ] | 1.2974 | 0.102 | 12.678 | 0.000 | 1.097 | 1.498 |
C(NAT, Treatment('CH'))[T.CA] | 0.3051 | 0.068 | 4.474 | 0.000 | 0.171 | 0.439 |
C(NAT, Treatment('CH'))[T.CB] | -0.0054 | 0.112 | -0.048 | 0.962 | -0.226 | 0.215 |
C(NAT, Treatment('CH'))[T.CC] | 0.0679 | 0.095 | 0.712 | 0.477 | -0.119 | 0.255 |
C(NAT, Treatment('CH'))[T.CD] | 1.0979 | 0.152 | 7.225 | 0.000 | 0.800 | 1.396 |
C(NAT, Treatment('CH'))[T.CE] | 0.1925 | 0.054 | 3.590 | 0.000 | 0.087 | 0.298 |
C(NAT, Treatment('CH'))[T.CF] | 0.6739 | 0.060 | 11.200 | 0.000 | 0.556 | 0.792 |
C(NAT, Treatment('CH'))[T.CG] | 0.5698 | 0.129 | 4.425 | 0.000 | 0.317 | 0.822 |
C(NAT, Treatment('CH'))[T.CI] | 0.4459 | 0.103 | 4.330 | 0.000 | 0.244 | 0.648 |
C(NAT, Treatment('CH'))[T.CM] | 0.7681 | 0.039 | 19.785 | 0.000 | 0.692 | 0.844 |
C(NAT, Treatment('CH'))[T.CO] | -0.0404 | 0.018 | -2.183 | 0.029 | -0.077 | -0.004 |
C(NAT, Treatment('CH'))[T.CS] | 0.5064 | 0.108 | 4.701 | 0.000 | 0.295 | 0.718 |
C(NAT, Treatment('CH'))[T.CU] | 2.5355 | 0.028 | 89.205 | 0.000 | 2.480 | 2.591 |
C(NAT, Treatment('CH'))[T.CV] | 0.3052 | 0.144 | 2.117 | 0.034 | 0.023 | 0.588 |
C(NAT, Treatment('CH'))[T.DC] | 0.2477 | 0.098 | 2.524 | 0.012 | 0.055 | 0.440 |
C(NAT, Treatment('CH'))[T.DR] | 0.0457 | 0.037 | 1.230 | 0.219 | -0.027 | 0.118 |
C(NAT, Treatment('CH'))[T.EC] | -0.6150 | 0.039 | -15.746 | 0.000 | -0.691 | -0.538 |
C(NAT, Treatment('CH'))[T.EG] | 1.3147 | 0.037 | 36.008 | 0.000 | 1.243 | 1.386 |
C(NAT, Treatment('CH'))[T.ER] | 1.2148 | 0.058 | 21.106 | 0.000 | 1.102 | 1.328 |
C(NAT, Treatment('CH'))[T.ES] | -0.7149 | 0.015 | -47.263 | 0.000 | -0.745 | -0.685 |
C(NAT, Treatment('CH'))[T.ET] | 0.9576 | 0.033 | 28.605 | 0.000 | 0.892 | 1.023 |
C(NAT, Treatment('CH'))[T.FJ] | 0.4588 | 0.071 | 6.490 | 0.000 | 0.320 | 0.597 |
C(NAT, Treatment('CH'))[T.GA] | 0.8409 | 0.061 | 13.854 | 0.000 | 0.722 | 0.960 |
C(NAT, Treatment('CH'))[T.GE] | 0.1469 | 0.110 | 1.341 | 0.180 | -0.068 | 0.361 |
C(NAT, Treatment('CH'))[T.GH] | 0.1828 | 0.056 | 3.260 | 0.001 | 0.073 | 0.293 |
C(NAT, Treatment('CH'))[T.GO] | 0.3617 | 0.067 | 5.366 | 0.000 | 0.230 | 0.494 |
C(NAT, Treatment('CH'))[T.GT] | -0.5818 | 0.016 | -36.319 | 0.000 | -0.613 | -0.550 |
C(NAT, Treatment('CH'))[T.GV] | 0.3212 | 0.039 | 8.260 | 0.000 | 0.245 | 0.397 |
C(NAT, Treatment('CH'))[T.GY] | -0.1489 | 0.068 | -2.176 | 0.030 | -0.283 | -0.015 |
C(NAT, Treatment('CH'))[T.HA] | -0.9526 | 0.020 | -47.677 | 0.000 | -0.992 | -0.913 |
C(NAT, Treatment('CH'))[T.HO] | -1.1712 | 0.020 | -59.329 | 0.000 | -1.210 | -1.133 |
C(NAT, Treatment('CH'))[T.ID] | -0.7054 | 0.025 | -28.382 | 0.000 | -0.754 | -0.657 |
C(NAT, Treatment('CH'))[T.IN] | -0.2308 | 0.020 | -11.319 | 0.000 | -0.271 | -0.191 |
C(NAT, Treatment('CH'))[T.IR] | 0.6773 | 0.039 | 17.240 | 0.000 | 0.600 | 0.754 |
C(NAT, Treatment('CH'))[T.IS] | 0.3764 | 0.068 | 5.530 | 0.000 | 0.243 | 0.510 |
C(NAT, Treatment('CH'))[T.IV] | 0.4885 | 0.060 | 8.161 | 0.000 | 0.371 | 0.606 |
C(NAT, Treatment('CH'))[T.IZ] | 1.3838 | 0.044 | 31.251 | 0.000 | 1.297 | 1.471 |
C(NAT, Treatment('CH'))[T.JM] | 0.4448 | 0.040 | 11.051 | 0.000 | 0.366 | 0.524 |
C(NAT, Treatment('CH'))[T.JO] | 0.5991 | 0.057 | 10.496 | 0.000 | 0.487 | 0.711 |
C(NAT, Treatment('CH'))[T.KE] | 0.3036 | 0.047 | 6.526 | 0.000 | 0.212 | 0.395 |
C(NAT, Treatment('CH'))[T.KG] | 1.0636 | 0.112 | 9.463 | 0.000 | 0.843 | 1.284 |
C(NAT, Treatment('CH'))[T.KS] | 0.0430 | 0.058 | 0.738 | 0.460 | -0.071 | 0.157 |
C(NAT, Treatment('CH'))[T.KV] | 0.5753 | 0.133 | 4.322 | 0.000 | 0.314 | 0.836 |
C(NAT, Treatment('CH'))[T.KZ] | 0.9906 | 0.094 | 10.497 | 0.000 | 0.806 | 1.176 |
C(NAT, Treatment('CH'))[T.LA] | 0.2637 | 0.085 | 3.109 | 0.002 | 0.097 | 0.430 |
C(NAT, Treatment('CH'))[T.LE] | 0.6112 | 0.054 | 11.366 | 0.000 | 0.506 | 0.717 |
C(NAT, Treatment('CH'))[T.LH] | 0.0126 | 0.121 | 0.104 | 0.917 | -0.224 | 0.249 |
C(NAT, Treatment('CH'))[T.LI] | 0.8832 | 0.058 | 15.181 | 0.000 | 0.769 | 0.997 |
C(NAT, Treatment('CH'))[T.MD] | 0.7486 | 0.080 | 9.383 | 0.000 | 0.592 | 0.905 |
C(NAT, Treatment('CH'))[T.MG] | -0.3401 | 0.075 | -4.517 | 0.000 | -0.488 | -0.193 |
C(NAT, Treatment('CH'))[T.ML] | 0.3333 | 0.061 | 5.457 | 0.000 | 0.214 | 0.453 |
C(NAT, Treatment('CH'))[T.MM] | -0.1192 | 0.092 | -1.301 | 0.193 | -0.299 | 0.060 |
C(NAT, Treatment('CH'))[T.MO] | 0.9727 | 0.076 | 12.750 | 0.000 | 0.823 | 1.122 |
C(NAT, Treatment('CH'))[T.MR] | -0.3944 | 0.040 | -9.925 | 0.000 | -0.472 | -0.317 |
C(NAT, Treatment('CH'))[T.MX] | 0.2113 | 0.014 | 15.116 | 0.000 | 0.184 | 0.239 |
C(NAT, Treatment('CH'))[T.MY] | 0.0890 | 0.126 | 0.705 | 0.481 | -0.158 | 0.336 |
C(NAT, Treatment('CH'))[T.NG] | 0.2499 | 0.116 | 2.145 | 0.032 | 0.022 | 0.478 |
C(NAT, Treatment('CH'))[T.NI] | 0.4264 | 0.038 | 11.095 | 0.000 | 0.351 | 0.502 |
C(NAT, Treatment('CH'))[T.NP] | 0.3974 | 0.035 | 11.272 | 0.000 | 0.328 | 0.466 |
C(NAT, Treatment('CH'))[T.NU] | 0.2070 | 0.039 | 5.244 | 0.000 | 0.130 | 0.284 |
C(NAT, Treatment('CH'))[T.PE] | 0.4044 | 0.032 | 12.568 | 0.000 | 0.341 | 0.467 |
C(NAT, Treatment('CH'))[T.PK] | 0.3409 | 0.029 | 11.892 | 0.000 | 0.285 | 0.397 |
C(NAT, Treatment('CH'))[T.PL] | 0.1484 | 0.063 | 2.350 | 0.019 | 0.025 | 0.272 |
C(NAT, Treatment('CH'))[T.PM] | 0.6881 | 0.115 | 6.001 | 0.000 | 0.463 | 0.913 |
C(NAT, Treatment('CH'))[T.PO] | 0.2523 | 0.117 | 2.160 | 0.031 | 0.023 | 0.481 |
C(NAT, Treatment('CH'))[T.RO] | 0.4729 | 0.056 | 8.515 | 0.000 | 0.364 | 0.582 |
C(NAT, Treatment('CH'))[T.RP] | 0.5824 | 0.038 | 15.128 | 0.000 | 0.507 | 0.658 |
C(NAT, Treatment('CH'))[T.RU] | 0.9020 | 0.032 | 28.403 | 0.000 | 0.840 | 0.964 |
C(NAT, Treatment('CH'))[T.RW] | 1.0881 | 0.106 | 10.277 | 0.000 | 0.881 | 1.296 |
C(NAT, Treatment('CH'))[T.SF] | 0.6042 | 0.103 | 5.851 | 0.000 | 0.402 | 0.807 |
C(NAT, Treatment('CH'))[T.SG] | 0.2713 | 0.070 | 3.866 | 0.000 | 0.134 | 0.409 |
C(NAT, Treatment('CH'))[T.SL] | 0.0872 | 0.058 | 1.501 | 0.133 | -0.027 | 0.201 |
C(NAT, Treatment('CH'))[T.SO] | 0.4761 | 0.042 | 11.273 | 0.000 | 0.393 | 0.559 |
C(NAT, Treatment('CH'))[T.SS] | 0.5528 | 0.085 | 6.509 | 0.000 | 0.386 | 0.719 |
C(NAT, Treatment('CH'))[T.SU] | 0.7053 | 0.070 | 10.132 | 0.000 | 0.569 | 0.842 |
C(NAT, Treatment('CH'))[T.SY] | 1.0766 | 0.070 | 15.472 | 0.000 | 0.940 | 1.213 |
C(NAT, Treatment('CH'))[T.TD] | 0.7608 | 0.065 | 11.762 | 0.000 | 0.634 | 0.888 |
C(NAT, Treatment('CH'))[T.TH] | 0.5876 | 0.111 | 5.276 | 0.000 | 0.369 | 0.806 |
C(NAT, Treatment('CH'))[T.TO] | 0.5789 | 0.066 | 8.732 | 0.000 | 0.449 | 0.709 |
C(NAT, Treatment('CH'))[T.TS] | 0.9330 | 0.126 | 7.379 | 0.000 | 0.685 | 1.181 |
C(NAT, Treatment('CH'))[T.TU] | 0.2206 | 0.072 | 3.065 | 0.002 | 0.080 | 0.362 |
C(NAT, Treatment('CH'))[T.TZ] | 0.3182 | 0.119 | 2.672 | 0.008 | 0.085 | 0.552 |
C(NAT, Treatment('CH'))[T.UE] | 0.5898 | 0.048 | 12.393 | 0.000 | 0.497 | 0.683 |
C(NAT, Treatment('CH'))[T.UG] | 0.6678 | 0.075 | 8.910 | 0.000 | 0.521 | 0.815 |
C(NAT, Treatment('CH'))[T.UK] | 0.3685 | 0.085 | 4.347 | 0.000 | 0.202 | 0.535 |
C(NAT, Treatment('CH'))[T.UR] | 1.0622 | 0.053 | 19.914 | 0.000 | 0.958 | 1.167 |
C(NAT, Treatment('CH'))[T.UZ] | 0.7145 | 0.058 | 12.267 | 0.000 | 0.600 | 0.829 |
C(NAT, Treatment('CH'))[T.VE] | 0.3001 | 0.029 | 10.508 | 0.000 | 0.244 | 0.356 |
C(NAT, Treatment('CH'))[T.VM] | 0.1128 | 0.061 | 1.864 | 0.062 | -0.006 | 0.231 |
C(NAT, Treatment('CH'))[T.YE] | 0.1601 | 0.077 | 2.078 | 0.038 | 0.009 | 0.311 |
C(NAT, Treatment('CH'))[T.YO] | 0.2948 | 0.043 | 6.880 | 0.000 | 0.211 | 0.379 |
C(NAT, Treatment('CH'))[T.YS] | 0.4937 | 0.107 | 4.627 | 0.000 | 0.285 | 0.703 |
C(NAT, Treatment('CH'))[T.ZI] | 0.6402 | 0.064 | 9.933 | 0.000 | 0.514 | 0.767 |
Reading our results#
That's a lot lot lot lot of variables! Let's convert them to an easier-to-read dataframe with odds ratios and p values.
import numpy as np
coefs = pd.DataFrame({
'coef': result.params.values,
'odds ratio': np.exp(result.params.values),
'pvalue': result.pvalues,
'column': result.params.index
}).sort_values(by='odds ratio', ascending=False)
coefs.head(10)
coef | odds ratio | pvalue | column | |
---|---|---|---|---|
C(NAT, Treatment('CH'))[T.CU] | 2.53550 | 12.62271 | 0.00000 | C(NAT, Treatment('CH'))[T.CU] |
C(IJ_CODE, Treatment('ROS'))[T.TAB] | 2.14198 | 8.51629 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.TAB] |
C(IJ_CODE, Treatment('ROS'))[T.PMM] | 2.12543 | 8.37650 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.PMM] |
C(IJ_CODE, Treatment('ROS'))[T.ICD] | 2.08921 | 8.07852 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.ICD] |
C(IJ_CODE, Treatment('ROS'))[T.NB] | 1.78492 | 5.95909 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.NB] |
C(IJ_CODE, Treatment('ROS'))[T.WVW] | 1.74893 | 5.74842 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.WVW] |
C(IJ_CODE, Treatment('ROS'))[T.OLC] | 1.66564 | 5.28903 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.OLC] |
C(IJ_CODE, Treatment('ROS'))[T.SSC] | 1.60332 | 4.96951 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.SSC] |
C(IJ_CODE, Treatment('ROS'))[T.PD1] | 1.56840 | 4.79897 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.PD1] |
C(IJ_CODE, Treatment('ROS'))[T.RAC] | 1.53783 | 4.65448 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.RAC] |
While we could pick through that list to get the top n
, let's look at each slice separately. Judges, sites, and nationalities, one at a time.
Judges#
# Highest odds ratio
coefs[coefs.column.str.contains("IJ_CODE")].sort_values(by='odds ratio', ascending=False).head()
coef | odds ratio | pvalue | column | |
---|---|---|---|---|
C(IJ_CODE, Treatment('ROS'))[T.TAB] | 2.14198 | 8.51629 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.TAB] |
C(IJ_CODE, Treatment('ROS'))[T.PMM] | 2.12543 | 8.37650 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.PMM] |
C(IJ_CODE, Treatment('ROS'))[T.ICD] | 2.08921 | 8.07852 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.ICD] |
C(IJ_CODE, Treatment('ROS'))[T.NB] | 1.78492 | 5.95909 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.NB] |
C(IJ_CODE, Treatment('ROS'))[T.WVW] | 1.74893 | 5.74842 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.WVW] |
# Lowest odds ratio
coefs[coefs.column.str.contains("IJ_CODE")].sort_values(by='odds ratio', ascending=True).head()
coef | odds ratio | pvalue | column | |
---|---|---|---|---|
C(IJ_CODE, Treatment('ROS'))[T.MS1] | -2.65239 | 0.07048 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.MS1] |
C(IJ_CODE, Treatment('ROS'))[T.HAR] | -2.64110 | 0.07128 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.HAR] |
C(IJ_CODE, Treatment('ROS'))[T.TCR] | -2.52388 | 0.08015 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.TCR] |
C(IJ_CODE, Treatment('ROS'))[T.RMH] | -2.45111 | 0.08620 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.RMH] |
C(IJ_CODE, Treatment('ROS'))[T.VBM] | -2.41153 | 0.08968 | 0.00000 | C(IJ_CODE, Treatment('ROS'))[T.VBM] |
Those odds ratios let us how each other judge compares to Raphael Ortiz-Segura, controlling for city and nationality.
Cities/Sites#
Same with the cities - they're each compared to New York.
# Highest odds ratio
coefs[coefs.column.str.contains("SITE")].sort_values(by='odds ratio', ascending=False).head()
coef | odds ratio | pvalue | column | |
---|---|---|---|---|
C(UPDATE_SITE, Treatment('NYC'))[T.ELP] | 0.96261 | 2.61851 | 0.00000 | C(UPDATE_SITE, Treatment('NYC'))[T.ELP] |
C(UPDATE_SITE, Treatment('NYC'))[T.SFR] | 0.66628 | 1.94698 | 0.00000 | C(UPDATE_SITE, Treatment('NYC'))[T.SFR] |
C(UPDATE_SITE, Treatment('NYC'))[T.PHO] | 0.66577 | 1.94599 | 0.00000 | C(UPDATE_SITE, Treatment('NYC'))[T.PHO] |
C(UPDATE_SITE, Treatment('NYC'))[T.LOS] | 0.59240 | 1.80833 | 0.00000 | C(UPDATE_SITE, Treatment('NYC'))[T.LOS] |
C(UPDATE_SITE, Treatment('NYC'))[T.WAS] | 0.50693 | 1.66018 | 0.00000 | C(UPDATE_SITE, Treatment('NYC'))[T.WAS] |
# Highest odds ratio
coefs[coefs.column.str.contains("SITE")].sort_values(by='odds ratio', ascending=True).head()
coef | odds ratio | pvalue | column | |
---|---|---|---|---|
C(UPDATE_SITE, Treatment('NYC'))[T.ELO] | -2.16287 | 0.11499 | 0.00000 | C(UPDATE_SITE, Treatment('NYC'))[T.ELO] |
C(UPDATE_SITE, Treatment('NYC'))[T.LAD] | -1.67067 | 0.18812 | 0.00000 | C(UPDATE_SITE, Treatment('NYC'))[T.LAD] |
C(UPDATE_SITE, Treatment('NYC'))[T.PIS] | -1.63704 | 0.19456 | 0.00000 | C(UPDATE_SITE, Treatment('NYC'))[T.PIS] |
C(UPDATE_SITE, Treatment('NYC'))[T.CHL] | -1.59208 | 0.20350 | 0.00000 | C(UPDATE_SITE, Treatment('NYC'))[T.CHL] |
C(UPDATE_SITE, Treatment('NYC'))[T.KRO] | -1.27262 | 0.28010 | 0.00000 | C(UPDATE_SITE, Treatment('NYC'))[T.KRO] |
Nationalities#
We'll need to pull in the list of nationalities so we know what we're looking at.
from io import StringIO
content = open("data/tblLookupAlienNat.csv").read().replace('"','')
nationalities = pd.read_csv(StringIO(content), sep='\t')
nationalities[['strCode', 'strDescription']].sort_values(by='strCode')
strCode | strDescription | |
---|---|---|
0 | <A> | <All> |
1 | ?? | UNKNOWN NATIONALITY |
2 | AB | ARUBA |
3 | AC | ANTIGUA AND BARBUDA |
4 | AF | AFGHANISTAN |
5 | AG | ALGERIA |
6 | AL | ALBANIA |
7 | AM | ARMENIA |
8 | AN | ANDORRA |
9 | AO | ANGOLA |
10 | AR | ARGENTINA |
11 | AS | AUSTRALIA |
12 | AU | AUSTRIA |
13 | AV | ANGUILLA |
14 | AZ | AZERBAIJAN |
15 | BA | BAHRAIN |
16 | BB | BARBADOS |
17 | BC | BOTSWANA |
18 | BD | BERMUDA |
19 | BE | BELGIUM |
20 | BF | BAHAMAS |
21 | BG | BANGLADESH |
22 | BH | BELIZE |
23 | BI | BOSNIA-HERZEGOVINA |
24 | BL | BOLIVIA |
25 | BM | BURMA (MYANMAR) |
26 | BN | BENIN |
27 | BO | BURKINA FASO |
28 | BP | SOLOMON ISLANDS |
29 | BR | BRAZIL |
30 | BS | BYELORUSSIA (BELARUS) |
31 | BT | BHUTAN |
32 | BU | BULGARIA |
33 | BV | BOUVET ISLAND |
34 | BW | BRITISH WEST INDIES |
35 | BX | BRUNEI |
36 | BY | BURUNDI |
37 | BZ | BELARUS |
38 | CA | CANADA |
39 | CB | KAMPUCHEA |
40 | CC | CAMBODIA |
41 | CD | CHAD |
42 | CE | SRI LANKA |
43 | CF | PEOPLE'S REPUBLIC OF THE CONGO |
44 | CG | ZAIRE |
45 | CH | CHINA |
46 | CI | CHILE |
47 | CJ | CAYMAN ISLANDS |
48 | CK | COCOS ISLAND |
49 | CM | CAMEROON |
50 | CN | COMOROS |
51 | CO | COLOMBIA |
52 | CR | CZECH REPUBLIC |
53 | CS | COSTA RICA |
54 | CT | CENTRAL AFRICAN REPUBLIC |
55 | CU | CUBA |
56 | CV | CAPE VERDE |
57 | CW | COOK ISLANDS |
58 | CX | CROATIA |
59 | CY | CYPRUS |
60 | CZ | CZECHOSLOVAKIA |
61 | DA | DENMARK |
62 | DC | DEMOCRATIC REPUBLIC OF CONGO |
63 | DJ | DJIBOUTI |
64 | DM | PEOPLE'S REPUBLIC OF BENIN |
65 | DO | DOMINICA |
66 | DR | DOMINICAN REPUBLIC |
67 | EC | ECUADOR |
68 | EG | EGYPT |
69 | EI | IRELAND |
70 | EK | EQUATORIAL GUINEA |
71 | EO | ESTONIA |
72 | ER | ERITREA |
73 | ES | EL SALVADOR |
74 | ET | ETHIOPIA |
75 | FA | FALKLAND ISLANDS |
76 | FG | FRENCH GUIANA |
77 | FI | FINLAND |
78 | FJ | FIJI |
79 | FM | FEDERATED STATES OF MICRONESIA |
80 | FO | FAEROE ISLAND |
81 | FP | FRENCH POLYNESIA |
82 | FR | FRANCE |
83 | FS | FRENCH SOUTHERN AND ANTARCTIC LANDS |
84 | FW | FRENCH WEST INDIES |
85 | GA | GAMBIA |
86 | GB | GABON |
87 | GC | EAST GERMANY |
88 | GE | GERMANY |
89 | GH | GHANA |
90 | GI | GIBRALTAR |
91 | GJ | GRENADA |
92 | GL | GREENLAND |
93 | GO | GEORGIA |
94 | GP | GUADELOUPE |
95 | GR | GREECE |
96 | GT | GUATEMALA |
97 | GV | GUINEA |
98 | GY | GUYANA |
99 | GZ | GAZA STRIP |
100 | HA | HAITI |
101 | HK | HONG KONG |
102 | HL | HOLLAND |
103 | HM | HEARD AND MCDONALD ISLANDS |
104 | HO | HONDURAS |
105 | HU | HUNGARY |
106 | IC | ICELAND |
107 | ID | INDONESIA |
108 | IN | INDIA |
109 | IO | BRITISH INDIAN OCEAN TERRITORY |
110 | IR | IRAN |
111 | IS | ISRAEL |
112 | IT | ITALY |
113 | IU | IN ABSENTIA/UNKNOWN |
114 | IV | IVORY COAST (COTE D'IVOIRE) |
115 | IZ | IRAQ |
116 | JA | JAPAN |
117 | JM | JAMAICA |
118 | JO | JORDAN |
119 | KE | KENYA |
120 | KG | KIRGHIZIA (KYRGYZSTAN) |
121 | KN | NORTH KOREA |
122 | KO | KOSRAE, FEDERATED STATES OF MICRONESIA |
123 | KR | KIRIBATI |
124 | KS | SOUTH KOREA |
125 | KT | CHRISTMAS ISLANDS |
126 | KU | KUWAIT |
127 | KV | KOSOVO |
128 | KZ | KAZAKHSTAN |
129 | LA | LAOS |
130 | LE | LEBANON |
131 | LH | LITHUANIA |
132 | LI | LIBERIA |
133 | LS | LIECHTENSTEIN |
134 | LT | LESOTHO |
135 | LU | LUXEMBOURG |
136 | LV | LATVIA |
137 | LY | LIBYA |
138 | MA | MADAGASCAR |
139 | MB | MARTINIQUE |
140 | MC | MACAU |
141 | MD | MOLDAVIA (MOLDOVA) |
142 | MG | MONGOLIA |
143 | MH | MONTSERRAT |
144 | MI | MALAWI |
145 | MJ | Montenegro |
146 | ML | MALI |
147 | MM | MACEDONIA |
148 | MN | MONACO |
149 | MO | MOROCCO |
150 | MP | MAURITIUS |
151 | MQ | MIDWAY ISLANDS |
152 | MR | MAURITANIA |
153 | MT | MALTA |
154 | MU | OMAN |
155 | MV | MALDIVES |
156 | MX | MEXICO |
157 | MY | MALAYSIA |
158 | MZ | MOZAMBIQUE |
160 | NC | NEW CALEDONIA |
161 | ND | Not Designated by IJ |
162 | NE | NIUE |
163 | NF | NORFOLK ISLAND |
164 | NH | VANUATU |
165 | NI | NIGERIA |
166 | NL | NETHERLANDS |
167 | NN | NO NATIONALITY |
168 | NO | NORWAY |
169 | NP | NEPAL |
170 | NQ | TRUST TERRITORY OF THE PACIFIC ISLANDS |
171 | NR | NAURU |
172 | NS | SURINAME |
173 | NU | NICARAGUA |
174 | NZ | NEW ZEALAND |
175 | PA | PARAGUAY |
176 | PC | PITCAIRN ISLANDS |
177 | PE | PERU |
178 | PI | PALAU |
179 | PK | PAKISTAN |
180 | PL | POLAND |
181 | PM | PANAMA |
182 | PN | PALESTINIAN |
183 | PO | PORTUGAL |
184 | PP | PAPUA NEW GUINEA |
185 | PS | THE REPUBLIC OF PALAU |
186 | PU | GUINEA BISSAU |
187 | QA | QATAR |
188 | RE | REUNION |
189 | RM | REPUBLIC OF THE MARSHALL ISLANDS |
190 | RO | ROMANIA |
191 | RP | PHILIPPINES |
192 | RU | RUSSIA |
193 | RW | RWANDA |
194 | SA | SAUDI ARABIA |
195 | SB | ST. PIERRE AND MIQUELON |
196 | SC | ST. KITTS AND NEVIS |
197 | SE | SEYCHELLES |
198 | SF | SOUTH AFRICA |
199 | SG | SENEGAL |
200 | SH | ST. HELENA |
201 | SK | ST. KIITTS, WEST INDIES |
202 | SL | SIERRA LEONE |
203 | SM | SAN MARINO |
204 | SN | SINGAPORE |
205 | SO | SOMALIA |
206 | SP | SPAIN |
207 | SR | SLOVAK REPUBLIC |
208 | SS | STATELESS - ALIEN UNABLE TO NAME A COUNTRY |
209 | ST | ST. LUCIA |
210 | SU | SUDAN |
211 | SV | SLOVENIA |
212 | SW | SWEDEN |
213 | SY | SYRIA |
214 | SZ | SWITZERLAND |
215 | TA | TAJIKISTAN (TADZHIK) |
216 | TC | UNITED ARAB EMIRATES |
217 | TD | TRINIDAD AND TOBAGO |
218 | TH | THAILAND |
219 | TK | TURKS AND CAICOS ISLANDS |
220 | TL | TOKELAU |
221 | TM | EAST TIMOR |
222 | TN | TONGA |
223 | TO | TOGO |
224 | TP | SAO TOME AND PRINCIPE |
225 | TR | TURKMENISTAN |
226 | TS | TUNISIA |
227 | TU | TURKEY |
228 | TV | TUVALU |
229 | TW | TAIWAN |
230 | TZ | TANZANIA |
231 | UE | UKRAINE |
232 | UG | UGANDA |
233 | UK | UNITED KINGDOM |
234 | UR | SOVIET UNION |
235 | US | UNITED STATES OF AMERICA |
236 | UV | UPPER VOLTA |
237 | UY | URUGUAY |
238 | UZ | UZBEKISTAN |
239 | VC | ST. VINCENT AND THE GRENADINES |
240 | VE | VENEZUELA |
241 | VI | BRITISH VIRGIN ISLANDS |
242 | VM | VIETNAM |
243 | WA | NAMIBIA |
244 | WI | WESTERN SAHARA |
245 | WS | WESTERN SAMOA |
246 | WZ | SWAZILAND |
247 | XS | SOUTH SUDAN |
248 | XX | BE REMOVED FROM UNITED STATES |
249 | YE | YEMEN |
250 | YO | YUGOSLAVIA |
251 | YS | SERBIA MONTENEGRO |
252 | ZA | ZAMBIA |
253 | ZI | ZIMBABWE |
159 | NaN | NETHERLANDS ANTILLES |
# Highest odds ratio
coefs[coefs.column.str.contains("NAT")].sort_values(by='odds ratio', ascending=False).head()
coef | odds ratio | pvalue | column | |
---|---|---|---|---|
C(NAT, Treatment('CH'))[T.CU] | 2.53550 | 12.62271 | 0.00000 | C(NAT, Treatment('CH'))[T.CU] |
C(NAT, Treatment('CH'))[T.IZ] | 1.38377 | 3.98990 | 0.00000 | C(NAT, Treatment('CH'))[T.IZ] |
C(NAT, Treatment('CH'))[T.EG] | 1.31471 | 3.72368 | 0.00000 | C(NAT, Treatment('CH'))[T.EG] |
C(NAT, Treatment('CH'))[T.BZ] | 1.29744 | 3.65991 | 0.00000 | C(NAT, Treatment('CH'))[T.BZ] |
C(NAT, Treatment('CH'))[T.ER] | 1.21485 | 3.36977 | 0.00000 | C(NAT, Treatment('CH'))[T.ER] |
Cuba, Iraq, Egypt, and Belarus are the top five (BZ and BS are both Belarus).
# Lowest odds ratio
coefs[coefs.column.str.contains("NAT")].sort_values(by='odds ratio', ascending=True).head()
coef | odds ratio | pvalue | column | |
---|---|---|---|---|
C(NAT, Treatment('CH'))[T.HO] | -1.17124 | 0.30998 | 0.00000 | C(NAT, Treatment('CH'))[T.HO] |
C(NAT, Treatment('CH'))[T.HA] | -0.95258 | 0.38575 | 0.00000 | C(NAT, Treatment('CH'))[T.HA] |
C(NAT, Treatment('CH'))[T.ES] | -0.71489 | 0.48925 | 0.00000 | C(NAT, Treatment('CH'))[T.ES] |
C(NAT, Treatment('CH'))[T.ID] | -0.70545 | 0.49389 | 0.00000 | C(NAT, Treatment('CH'))[T.ID] |
C(NAT, Treatment('CH'))[T.EC] | -0.61495 | 0.54067 | 0.00000 | C(NAT, Treatment('CH'))[T.EC] |
Honduras, Haiti, El Salvador, Indonesia, and Ecuador are the bottom five, all of which approximately half the chance or less than an asylum-seeker from China.
Trying again#
The thing is, though, these values probably depend on how we filter. Let's say we filter and perform our regression again, this time the only change being we look for nationalities and judges that show up 100 times instead of 300.
common_nats_100 = list(merged.NAT.value_counts()[merged.NAT.value_counts() >= 100].index)
has_common_nat_100 = merged.NAT.isin(common_nats_100)
common_judges_100 = list(merged.IJ_CODE.value_counts()[merged.IJ_CODE.value_counts() >= 100].index)
has_common_judge_100 = merged.IJ_CODE.isin(common_judges_100)
# We'll use the same two filters for judges and sites as before
# But use our new nationalities list
filtered = merged[has_common_judge_100 & has_common_site & has_common_nat_100]
print("ORIGINAL NATIONALITIES")
print(common_nats)
print("")
print("ADDED NATIONALITIES")
print(list(set(common_nats_100) - set(common_nats)))
ORIGINAL NATIONALITIES ['CH', 'MX', 'ES', 'GT', 'HA', 'HO', 'CO', 'CU', 'IN', 'AL', 'ID', 'PK', 'RU', 'VE', 'ET', 'EG', 'NP', 'AM', 'PE', 'RP', 'DR', 'IR', 'CM', 'BG', 'BR', 'GV', 'NI', 'IZ', 'EC', 'NU', 'JM', 'MR', 'UR', 'SO', 'YO', 'UE', 'ER', 'KE', 'CE', 'LE', 'RO', 'GA', 'BM', 'LI', 'UZ', 'JO', 'GH', 'IV', 'ML', 'CF', 'SY', 'SL', 'KS', 'VM', 'FJ', 'TD', 'ZI', 'PL', 'TO', 'BU', 'SU', 'GO', 'CA', 'MO', 'IS', 'SG', 'UG', 'GY', 'AR', 'TU', 'MD', 'BO', 'YE', 'MG', 'SS', 'AF', 'BZ', 'KZ', 'BS', 'LA', 'UK', 'KG', 'BL', 'RW', 'MM', 'CC', 'AG', 'AZ', 'DC', 'YS', 'SF', 'CI', 'TH', 'CS', 'GE', 'TS', 'PM', 'CB', 'BY', 'PO', 'NG', 'KV', 'TZ', 'MY', 'LH', 'BH', 'CG', 'CV', 'CD'] ADDED NATIONALITIES ['CX', 'BN', 'DO', 'TN', 'BI', 'FR', 'CT', 'HU', 'HK', 'TR', 'ZA', 'GJ', 'BB', 'CR', 'IT', 'EO', 'ST', 'PN', 'GR', 'TW', 'NS', 'AO', 'LV', 'CZ', 'JA', 'SP', 'BF', 'UY', 'LY', 'PA', 'SA', 'KU', 'SR', 'AS', 'TA']
print(len(common_judges_100), "judges, up from", len(common_judges))
487 judges, up from 359
print("Old version", merged[has_common_judge & has_common_site & has_common_nationality].shape)
print("New version", filtered.shape)
Old version (548433, 14) New version (578438, 14)
Okay, looks like an additional 30,000 cases, only about a 5% increase.
Performing the regression#
%%time
import statsmodels.formula.api as smf
# Create and run our regression
model = smf.logit("""
granted ~ C(IJ_CODE, Treatment('ROS')) + C(UPDATE_SITE, Treatment('NYC')) + C(NAT, Treatment('CH'))
""", data=filtered)
result = model.fit(method='bfgs', maxiter=1000)
# Not going to print the summary because it's SO LONG
#result.summary()
Optimization terminated successfully. Current function value: 0.553239 Iterations: 482 Function evaluations: 483 Gradient evaluations: 483 CPU times: user 16min 55s, sys: 33.7 s, total: 17min 29s Wall time: 9min 25s
# Build the coefficients dataframe
coefs = pd.DataFrame({
'coef': result.params.values,
'odds ratio': np.exp(result.params.values),
'pvalue': result.pvalues,
'column': result.params.index
}).sort_values(by='odds ratio', ascending=False)
# Highest odds ratio
coefs[coefs.column.str.contains("NAT")].sort_values(by='odds ratio', ascending=False).head()
coef | odds ratio | pvalue | column | |
---|---|---|---|---|
C(NAT, Treatment('CH'))[T.CU] | 2.47675 | 11.90248 | 0.00000 | C(NAT, Treatment('CH'))[T.CU] |
C(NAT, Treatment('CH'))[T.IZ] | 1.36025 | 3.89717 | 0.00000 | C(NAT, Treatment('CH'))[T.IZ] |
C(NAT, Treatment('CH'))[T.LY] | 1.32737 | 3.77110 | 0.00000 | C(NAT, Treatment('CH'))[T.LY] |
C(NAT, Treatment('CH'))[T.EG] | 1.32115 | 3.74772 | 0.00000 | C(NAT, Treatment('CH'))[T.EG] |
C(NAT, Treatment('CH'))[T.BZ] | 1.25971 | 3.52441 | 0.00000 | C(NAT, Treatment('CH'))[T.BZ] |
# Lowest odds ratio
coefs[coefs.column.str.contains("NAT")].sort_values(by='odds ratio', ascending=True).head()
coef | odds ratio | pvalue | column | |
---|---|---|---|---|
C(NAT, Treatment('CH'))[T.HO] | -1.19281 | 0.30337 | 0.00000 | C(NAT, Treatment('CH'))[T.HO] |
C(NAT, Treatment('CH'))[T.HA] | -0.98694 | 0.37271 | 0.00000 | C(NAT, Treatment('CH'))[T.HA] |
C(NAT, Treatment('CH'))[T.ES] | -0.76023 | 0.46756 | 0.00000 | C(NAT, Treatment('CH'))[T.ES] |
C(NAT, Treatment('CH'))[T.ID] | -0.72259 | 0.48549 | 0.00000 | C(NAT, Treatment('CH'))[T.ID] |
C(NAT, Treatment('CH'))[T.EC] | -0.65532 | 0.51928 | 0.00000 | C(NAT, Treatment('CH'))[T.EC] |
Discussion topics#
By lowering the threshold from 300 to 100, we gained over 30 "new" countries. Is there a downside to leaving more countries in there? If we think there aren't enough to make a valid conclusion, isn't that what p values are for?
About the site
Hi, I'm Soma, welcome to Data Science for Journalism a.k.a. investigate.ai!
There's been a lot of buzz about machine learning and "artificial intelligence" being used in stories over the past few years. It's mostly not that complicated - a little stats, a classifier here or there - but it's hard to know where to start without a little help.
If you know a little Python programming, hopefully this site can be that help! Learn more about this project here.
Our newsletter
Links
Thanks to Columbia Journalism School, the Knight Foundation, and many others.