{
    "cells": [
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "# Counting museums in China\n",
                "\n",
                "In this section we'll reproduce the graphics from [this piece here](https://datanews.caixin.com/mobile/museum/), where Caixin does a per-capita analysis of the museums in China."
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "<p class=\"reading-options\">\n  <a class=\"btn\" href=\"/caixin-museum-word-count/chinese-museums-per-capita-analysis\">\n    <i class=\"fa fa-sm fa-book\"></i>\n    Read online\n  </a>\n  <a class=\"btn\" href=\"/caixin-museum-word-count/notebooks/Chinese museums per capita analysis.ipynb\">\n    <i class=\"fa fa-sm fa-download\"></i>\n    Download notebook\n  </a>\n  <a class=\"btn\" href=\"https://colab.research.google.com/github/littlecolumns/ds4j-notebooks/blob/master/caixin-museum-word-count/notebooks/Chinese museums per capita analysis.ipynb\" target=\"_new\">\n    <i class=\"fa fa-sm fa-laptop\"></i>\n    Interactive version\n  </a>\n</p>"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "### Prep work: Downloading necessary files\n",
                "Before we get started, we need to download all of the data we'll be using.\n",
                "* **museums-cleaned.csv:** cleaned museums - A cleaned list of museums\n",
                "* **population-cleaned.csv:** population data - Cleaned population data with column names matching museum data\n"
            ]
        },
        {
            "cell_type": "code",
            "metadata": {},
            "source": [
                "# Make data directory if it doesn't exist\n",
                "!mkdir -p data\n",
                "!wget -nc https://nyc3.digitaloceanspaces.com/ml-files-distro/v1/caixin-museum-word-count/data/museums-cleaned.csv -P data\n",
                "!wget -nc https://nyc3.digitaloceanspaces.com/ml-files-distro/v1/caixin-museum-word-count/data/population-cleaned.csv -P data"
            ],
            "outputs": [],
            "execution_count": null
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Setup\n",
                "\n",
                "We'll import pandas as usual, but we'll also need to **do some special matplotlib setup**. This allows us to **have graphs with Chinese characters** - if we don't, every time we graph we'll get a lot of errors and the text won't look right."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 2,
            "metadata": {},
            "outputs": [],
            "source": [
                "import pandas as pd\n",
                "import matplotlib.pyplot as plt\n",
                "\n",
                "# So Chinese characters can appear correctly\n",
                "plt.rcParams['font.sans-serif'] = ['SimHei', 'SimSun', 'Microsoft YaHei New', 'Microsoft YaHei', 'Arial Unicode MS']\n",
                "\n",
                "%matplotlib inline"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Importing our data\n",
                "\n",
                "We'll be using the data we previously cleaned."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 3,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/html": [
                            "<div>\n",
                            "<style scoped>\n",
                            "    .dataframe tbody tr th:only-of-type {\n",
                            "        vertical-align: middle;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe tbody tr th {\n",
                            "        vertical-align: top;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe thead th {\n",
                            "        text-align: right;\n",
                            "    }\n",
                            "</style>\n",
                            "<table border=\"1\" class=\"dataframe\">\n",
                            "  <thead>\n",
                            "    <tr style=\"text-align: right;\">\n",
                            "      <th></th>\n",
                            "      <th>\u535a\u7269\u9986\u540d\u79f0</th>\n",
                            "      <th>\u535a\u7269\u9986\u6027\u8d28</th>\n",
                            "      <th>\u8d28\u91cf\u7b49\u7ea7</th>\n",
                            "      <th>\u662f\u5426\u514d\u8d39\u5f00\u653e</th>\n",
                            "      <th>\u5730\u5740</th>\n",
                            "      <th>region</th>\n",
                            "    </tr>\n",
                            "  </thead>\n",
                            "  <tbody>\n",
                            "    <tr>\n",
                            "      <th>0</th>\n",
                            "      <td>\u6545\u5bab\u535a\u7269\u9662</td>\n",
                            "      <td>\u6587\u7269</td>\n",
                            "      <td>\u4e00\u7ea7</td>\n",
                            "      <td>\u5426</td>\n",
                            "      <td>\u4e1c\u57ce\u533a\u666f\u5c71\u524d\u88574\u53f7</td>\n",
                            "      <td>\u5317\u4eac\u5e02</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>1</th>\n",
                            "      <td>\u4e2d\u56fd\u56fd\u5bb6\u535a\u7269\u9986</td>\n",
                            "      <td>\u6587\u7269</td>\n",
                            "      <td>\u4e00\u7ea7</td>\n",
                            "      <td>\u662f</td>\n",
                            "      <td>\u5317\u4eac\u5e02\u4e1c\u57ce\u533a\u4e1c\u957f\u5b89\u885716\u53f7</td>\n",
                            "      <td>\u5317\u4eac\u5e02</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>2</th>\n",
                            "      <td>\u4e2d\u56fd\u4eba\u6c11\u9769\u547d\u519b\u4e8b\u535a\u7269\u9986</td>\n",
                            "      <td>\u884c\u4e1a</td>\n",
                            "      <td>\u4e00\u7ea7</td>\n",
                            "      <td>\u662f</td>\n",
                            "      <td>\u6d77\u6dc0\u533a\u590d\u5174\u8def9\u53f7</td>\n",
                            "      <td>\u5317\u4eac\u5e02</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>3</th>\n",
                            "      <td>\u5317\u4eac\u9c81\u8fc5\u535a\u7269\u9986(\u5317\u4eac\u65b0\u6587\u5316\u8fd0\u52a8\\r\u7eaa\u5ff5\u9986)</td>\n",
                            "      <td>\u6587\u7269</td>\n",
                            "      <td>\u4e00\u7ea7</td>\n",
                            "      <td>\u662f</td>\n",
                            "      <td>\u961c\u6210\u95e8\u5185\u5bab\u95e8\u53e3\u4e8c\u676119\u53f7\\r\u4e1c\u57ce\u533a\u4e94\u56db\u5927\u885729\u53f7</td>\n",
                            "      <td>\u5317\u4eac\u5e02</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>4</th>\n",
                            "      <td>\u4e2d\u56fd\u5730\u8d28\u535a\u7269\u9986</td>\n",
                            "      <td>\u884c\u4e1a</td>\n",
                            "      <td>\u4e00\u7ea7</td>\n",
                            "      <td>\u5426</td>\n",
                            "      <td>\u897f\u57ce\u533a\u897f\u56db\u7f8a\u8089\u80e1\u540c15\u53f7</td>\n",
                            "      <td>\u5317\u4eac\u5e02</td>\n",
                            "    </tr>\n",
                            "  </tbody>\n",
                            "</table>\n",
                            "</div>"
                        ],
                        "text/plain": [
                            "                   \u535a\u7269\u9986\u540d\u79f0 \u535a\u7269\u9986\u6027\u8d28 \u8d28\u91cf\u7b49\u7ea7 \u662f\u5426\u514d\u8d39\u5f00\u653e                        \u5730\u5740 region\n",
                            "0                  \u6545\u5bab\u535a\u7269\u9662    \u6587\u7269   \u4e00\u7ea7      \u5426                 \u4e1c\u57ce\u533a\u666f\u5c71\u524d\u88574\u53f7    \u5317\u4eac\u5e02\n",
                            "1                \u4e2d\u56fd\u56fd\u5bb6\u535a\u7269\u9986    \u6587\u7269   \u4e00\u7ea7      \u662f             \u5317\u4eac\u5e02\u4e1c\u57ce\u533a\u4e1c\u957f\u5b89\u885716\u53f7    \u5317\u4eac\u5e02\n",
                            "2            \u4e2d\u56fd\u4eba\u6c11\u9769\u547d\u519b\u4e8b\u535a\u7269\u9986    \u884c\u4e1a   \u4e00\u7ea7      \u662f                  \u6d77\u6dc0\u533a\u590d\u5174\u8def9\u53f7    \u5317\u4eac\u5e02\n",
                            "3  \u5317\u4eac\u9c81\u8fc5\u535a\u7269\u9986(\u5317\u4eac\u65b0\u6587\u5316\u8fd0\u52a8\\r\u7eaa\u5ff5\u9986)    \u6587\u7269   \u4e00\u7ea7      \u662f  \u961c\u6210\u95e8\u5185\u5bab\u95e8\u53e3\u4e8c\u676119\u53f7\\r\u4e1c\u57ce\u533a\u4e94\u56db\u5927\u885729\u53f7    \u5317\u4eac\u5e02\n",
                            "4                \u4e2d\u56fd\u5730\u8d28\u535a\u7269\u9986    \u884c\u4e1a   \u4e00\u7ea7      \u5426              \u897f\u57ce\u533a\u897f\u56db\u7f8a\u8089\u80e1\u540c15\u53f7    \u5317\u4eac\u5e02"
                        ]
                    },
                    "execution_count": 3,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "df = pd.read_csv(\"data/museums-cleaned.csv\")\n",
                "df.head()"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "How many museums do we have?"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 4,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/plain": [
                            "(4469, 6)"
                        ]
                    },
                    "execution_count": 4,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "df.shape"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "Great. 4469 rows, 6 columns. 4471 museums, 6 pieces of data about each.\n",
                "\n",
                "## Counting values\n",
                "\n",
                "How many museums are in each province?"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 5,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/plain": [
                            "\u5c71\u4e1c\u7701         339\n",
                            "\u6d59\u6c5f\u7701         277\n",
                            "\u6c5f\u82cf\u7701         274\n",
                            "\u6cb3\u5357\u7701         265\n",
                            "\u5e7f\u4e1c\u7701         252\n",
                            "\u9655\u897f\u7701         236\n",
                            "\u56db\u5ddd\u7701         216\n",
                            "\u6e56\u5317\u7701         197\n",
                            "\u9ed1\u9f99\u6c5f\u7701        193\n",
                            "\u5185\u8499\u53e4\u81ea\u6cbb\u533a      192\n",
                            "\u7518\u8083\u7701         183\n",
                            "\u5b89\u5fbd\u7701         182\n",
                            "\u5317\u4eac\u5e02         146\n",
                            "\u6c5f\u897f\u7701         137\n",
                            "\u6e56\u5357\u7701         129\n",
                            "\u5c71\u897f\u7701         121\n",
                            "\u4e0a\u6d77\u5e02         116\n",
                            "\u798f\u5efa\u7701         111\n",
                            "\u5409\u6797          104\n",
                            "\u4e91\u5357\u7701         101\n",
                            "\u65b0\u7586\u7ef4\u543e\u5c14\u81ea\u6cbb\u533a    100\n",
                            "\u5e7f\u897f\u58ee\u65cf\u81ea\u6cbb\u533a      99\n",
                            "\u6cb3\u5317\u7701          97\n",
                            "\u8fbd\u5b81\u7701          93\n",
                            "\u8d35\u5dde\u7701          81\n",
                            "\u91cd\u5e86\u5e02          69\n",
                            "\u5929\u6d25\u5e02          56\n",
                            "\u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a      39\n",
                            "\u9752\u6d77\u7701          32\n",
                            "\u6d77\u5357\u7701          24\n",
                            "\u897f\u85cf\u81ea\u6cbb\u533a         8\n",
                            "Name: region, dtype: int64"
                        ]
                    },
                    "execution_count": 5,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "df.region.value_counts()"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "Honestly we use `value_counts()` to count _everything_ in _almost every column_."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 6,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/plain": [
                            "\u6587\u7269     2701\n",
                            "\u975e\u56fd\u6709    1058\n",
                            "\u884c\u4e1a      710\n",
                            "Name: \u535a\u7269\u9986\u6027\u8d28, dtype: int64"
                        ]
                    },
                    "execution_count": 6,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "df.\u535a\u7269\u9986\u6027\u8d28.value_counts()"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 7,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/plain": [
                            "\u65e0\u7ea7\u522b    3772\n",
                            "\u4e09\u7ea7      393\n",
                            "\u4e8c\u7ea7      212\n",
                            "\u4e00\u7ea7       92\n",
                            "Name: \u8d28\u91cf\u7b49\u7ea7, dtype: int64"
                        ]
                    },
                    "execution_count": 7,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "df.\u8d28\u91cf\u7b49\u7ea7.value_counts()"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 8,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/plain": [
                            "\u662f    3844\n",
                            "\u5426     625\n",
                            "Name: \u662f\u5426\u514d\u8d39\u5f00\u653e, dtype: int64"
                        ]
                    },
                    "execution_count": 8,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "df.\u662f\u5426\u514d\u8d39\u5f00\u653e.value_counts()"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Crosstab for combinations\n",
                "\n",
                "What if we want to see how many of a _combination_? `pd.crosstab` to the rescue!"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 9,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/html": [
                            "<div>\n",
                            "<style scoped>\n",
                            "    .dataframe tbody tr th:only-of-type {\n",
                            "        vertical-align: middle;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe tbody tr th {\n",
                            "        vertical-align: top;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe thead th {\n",
                            "        text-align: right;\n",
                            "    }\n",
                            "</style>\n",
                            "<table border=\"1\" class=\"dataframe\">\n",
                            "  <thead>\n",
                            "    <tr style=\"text-align: right;\">\n",
                            "      <th>\u662f\u5426\u514d\u8d39\u5f00\u653e</th>\n",
                            "      <th>\u5426</th>\n",
                            "      <th>\u662f</th>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u535a\u7269\u9986\u6027\u8d28</th>\n",
                            "      <th></th>\n",
                            "      <th></th>\n",
                            "    </tr>\n",
                            "  </thead>\n",
                            "  <tbody>\n",
                            "    <tr>\n",
                            "      <th>\u6587\u7269</th>\n",
                            "      <td>313</td>\n",
                            "      <td>2388</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u884c\u4e1a</th>\n",
                            "      <td>160</td>\n",
                            "      <td>550</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u975e\u56fd\u6709</th>\n",
                            "      <td>152</td>\n",
                            "      <td>906</td>\n",
                            "    </tr>\n",
                            "  </tbody>\n",
                            "</table>\n",
                            "</div>"
                        ],
                        "text/plain": [
                            "\u662f\u5426\u514d\u8d39\u5f00\u653e    \u5426     \u662f\n",
                            "\u535a\u7269\u9986\u6027\u8d28            \n",
                            "\u6587\u7269      313  2388\n",
                            "\u884c\u4e1a      160   550\n",
                            "\u975e\u56fd\u6709     152   906"
                        ]
                    },
                    "execution_count": 9,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "pd.crosstab(df.\u535a\u7269\u9986\u6027\u8d28, df.\u662f\u5426\u514d\u8d39\u5f00\u653e)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 10,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/html": [
                            "<div>\n",
                            "<style scoped>\n",
                            "    .dataframe tbody tr th:only-of-type {\n",
                            "        vertical-align: middle;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe tbody tr th {\n",
                            "        vertical-align: top;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe thead th {\n",
                            "        text-align: right;\n",
                            "    }\n",
                            "</style>\n",
                            "<table border=\"1\" class=\"dataframe\">\n",
                            "  <thead>\n",
                            "    <tr style=\"text-align: right;\">\n",
                            "      <th>\u662f\u5426\u514d\u8d39\u5f00\u653e</th>\n",
                            "      <th>\u5426</th>\n",
                            "      <th>\u662f</th>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u535a\u7269\u9986\u6027\u8d28</th>\n",
                            "      <th></th>\n",
                            "      <th></th>\n",
                            "    </tr>\n",
                            "  </thead>\n",
                            "  <tbody>\n",
                            "    <tr>\n",
                            "      <th>\u6587\u7269</th>\n",
                            "      <td>313</td>\n",
                            "      <td>2388</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u884c\u4e1a</th>\n",
                            "      <td>160</td>\n",
                            "      <td>550</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u975e\u56fd\u6709</th>\n",
                            "      <td>152</td>\n",
                            "      <td>906</td>\n",
                            "    </tr>\n",
                            "  </tbody>\n",
                            "</table>\n",
                            "</div>"
                        ],
                        "text/plain": [
                            "\u662f\u5426\u514d\u8d39\u5f00\u653e    \u5426     \u662f\n",
                            "\u535a\u7269\u9986\u6027\u8d28            \n",
                            "\u6587\u7269      313  2388\n",
                            "\u884c\u4e1a      160   550\n",
                            "\u975e\u56fd\u6709     152   906"
                        ]
                    },
                    "execution_count": 10,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "pd.crosstab(df.\u535a\u7269\u9986\u6027\u8d28, df.\u662f\u5426\u514d\u8d39\u5f00\u653e)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 11,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/html": [
                            "<div>\n",
                            "<style scoped>\n",
                            "    .dataframe tbody tr th:only-of-type {\n",
                            "        vertical-align: middle;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe tbody tr th {\n",
                            "        vertical-align: top;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe thead th {\n",
                            "        text-align: right;\n",
                            "    }\n",
                            "</style>\n",
                            "<table border=\"1\" class=\"dataframe\">\n",
                            "  <thead>\n",
                            "    <tr style=\"text-align: right;\">\n",
                            "      <th>\u662f\u5426\u514d\u8d39\u5f00\u653e</th>\n",
                            "      <th>\u5426</th>\n",
                            "      <th>\u662f</th>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>region</th>\n",
                            "      <th></th>\n",
                            "      <th></th>\n",
                            "    </tr>\n",
                            "  </thead>\n",
                            "  <tbody>\n",
                            "    <tr>\n",
                            "      <th>\u4e0a\u6d77\u5e02</th>\n",
                            "      <td>22</td>\n",
                            "      <td>94</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u4e91\u5357\u7701</th>\n",
                            "      <td>8</td>\n",
                            "      <td>93</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5185\u8499\u53e4\u81ea\u6cbb\u533a</th>\n",
                            "      <td>1</td>\n",
                            "      <td>191</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5317\u4eac\u5e02</th>\n",
                            "      <td>77</td>\n",
                            "      <td>69</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5409\u6797</th>\n",
                            "      <td>15</td>\n",
                            "      <td>89</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u56db\u5ddd\u7701</th>\n",
                            "      <td>131</td>\n",
                            "      <td>85</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5929\u6d25\u5e02</th>\n",
                            "      <td>22</td>\n",
                            "      <td>34</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a</th>\n",
                            "      <td>10</td>\n",
                            "      <td>29</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5b89\u5fbd\u7701</th>\n",
                            "      <td>3</td>\n",
                            "      <td>179</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5c71\u4e1c\u7701</th>\n",
                            "      <td>35</td>\n",
                            "      <td>304</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5c71\u897f\u7701</th>\n",
                            "      <td>16</td>\n",
                            "      <td>105</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5e7f\u4e1c\u7701</th>\n",
                            "      <td>18</td>\n",
                            "      <td>234</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5e7f\u897f\u58ee\u65cf\u81ea\u6cbb\u533a</th>\n",
                            "      <td>18</td>\n",
                            "      <td>81</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u65b0\u7586\u7ef4\u543e\u5c14\u81ea\u6cbb\u533a</th>\n",
                            "      <td>1</td>\n",
                            "      <td>99</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6c5f\u82cf\u7701</th>\n",
                            "      <td>44</td>\n",
                            "      <td>230</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6c5f\u897f\u7701</th>\n",
                            "      <td>0</td>\n",
                            "      <td>137</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6cb3\u5317\u7701</th>\n",
                            "      <td>13</td>\n",
                            "      <td>84</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6cb3\u5357\u7701</th>\n",
                            "      <td>26</td>\n",
                            "      <td>239</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6d59\u6c5f\u7701</th>\n",
                            "      <td>11</td>\n",
                            "      <td>266</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6d77\u5357\u7701</th>\n",
                            "      <td>0</td>\n",
                            "      <td>24</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6e56\u5317\u7701</th>\n",
                            "      <td>12</td>\n",
                            "      <td>185</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6e56\u5357\u7701</th>\n",
                            "      <td>11</td>\n",
                            "      <td>118</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u7518\u8083\u7701</th>\n",
                            "      <td>9</td>\n",
                            "      <td>174</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u798f\u5efa\u7701</th>\n",
                            "      <td>6</td>\n",
                            "      <td>105</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u897f\u85cf\u81ea\u6cbb\u533a</th>\n",
                            "      <td>2</td>\n",
                            "      <td>6</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u8d35\u5dde\u7701</th>\n",
                            "      <td>3</td>\n",
                            "      <td>78</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u8fbd\u5b81\u7701</th>\n",
                            "      <td>10</td>\n",
                            "      <td>83</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u91cd\u5e86\u5e02</th>\n",
                            "      <td>12</td>\n",
                            "      <td>57</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u9655\u897f\u7701</th>\n",
                            "      <td>86</td>\n",
                            "      <td>150</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u9752\u6d77\u7701</th>\n",
                            "      <td>3</td>\n",
                            "      <td>29</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u9ed1\u9f99\u6c5f\u7701</th>\n",
                            "      <td>0</td>\n",
                            "      <td>193</td>\n",
                            "    </tr>\n",
                            "  </tbody>\n",
                            "</table>\n",
                            "</div>"
                        ],
                        "text/plain": [
                            "\u662f\u5426\u514d\u8d39\u5f00\u653e      \u5426    \u662f\n",
                            "region            \n",
                            "\u4e0a\u6d77\u5e02        22   94\n",
                            "\u4e91\u5357\u7701         8   93\n",
                            "\u5185\u8499\u53e4\u81ea\u6cbb\u533a      1  191\n",
                            "\u5317\u4eac\u5e02        77   69\n",
                            "\u5409\u6797         15   89\n",
                            "\u56db\u5ddd\u7701       131   85\n",
                            "\u5929\u6d25\u5e02        22   34\n",
                            "\u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a    10   29\n",
                            "\u5b89\u5fbd\u7701         3  179\n",
                            "\u5c71\u4e1c\u7701        35  304\n",
                            "\u5c71\u897f\u7701        16  105\n",
                            "\u5e7f\u4e1c\u7701        18  234\n",
                            "\u5e7f\u897f\u58ee\u65cf\u81ea\u6cbb\u533a    18   81\n",
                            "\u65b0\u7586\u7ef4\u543e\u5c14\u81ea\u6cbb\u533a    1   99\n",
                            "\u6c5f\u82cf\u7701        44  230\n",
                            "\u6c5f\u897f\u7701         0  137\n",
                            "\u6cb3\u5317\u7701        13   84\n",
                            "\u6cb3\u5357\u7701        26  239\n",
                            "\u6d59\u6c5f\u7701        11  266\n",
                            "\u6d77\u5357\u7701         0   24\n",
                            "\u6e56\u5317\u7701        12  185\n",
                            "\u6e56\u5357\u7701        11  118\n",
                            "\u7518\u8083\u7701         9  174\n",
                            "\u798f\u5efa\u7701         6  105\n",
                            "\u897f\u85cf\u81ea\u6cbb\u533a       2    6\n",
                            "\u8d35\u5dde\u7701         3   78\n",
                            "\u8fbd\u5b81\u7701        10   83\n",
                            "\u91cd\u5e86\u5e02        12   57\n",
                            "\u9655\u897f\u7701        86  150\n",
                            "\u9752\u6d77\u7701         3   29\n",
                            "\u9ed1\u9f99\u6c5f\u7701        0  193"
                        ]
                    },
                    "execution_count": 11,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "pd.crosstab(df.region, df.\u662f\u5426\u514d\u8d39\u5f00\u653e)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Percentage crosstabs\n",
                "\n",
                "Instead of pure counts, sometimes you want crosstab to return a percentage. In this case, we'll just pass `normalize='index'` to have each column be a percentage of the row."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 12,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/html": [
                            "<div>\n",
                            "<style scoped>\n",
                            "    .dataframe tbody tr th:only-of-type {\n",
                            "        vertical-align: middle;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe tbody tr th {\n",
                            "        vertical-align: top;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe thead th {\n",
                            "        text-align: right;\n",
                            "    }\n",
                            "</style>\n",
                            "<table border=\"1\" class=\"dataframe\">\n",
                            "  <thead>\n",
                            "    <tr style=\"text-align: right;\">\n",
                            "      <th>\u535a\u7269\u9986\u6027\u8d28</th>\n",
                            "      <th>\u6587\u7269</th>\n",
                            "      <th>\u884c\u4e1a</th>\n",
                            "      <th>\u975e\u56fd\u6709</th>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>region</th>\n",
                            "      <th></th>\n",
                            "      <th></th>\n",
                            "      <th></th>\n",
                            "    </tr>\n",
                            "  </thead>\n",
                            "  <tbody>\n",
                            "    <tr>\n",
                            "      <th>\u4e0a\u6d77\u5e02</th>\n",
                            "      <td>0.370690</td>\n",
                            "      <td>0.387931</td>\n",
                            "      <td>0.241379</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u4e91\u5357\u7701</th>\n",
                            "      <td>0.762376</td>\n",
                            "      <td>0.148515</td>\n",
                            "      <td>0.089109</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5185\u8499\u53e4\u81ea\u6cbb\u533a</th>\n",
                            "      <td>0.614583</td>\n",
                            "      <td>0.119792</td>\n",
                            "      <td>0.265625</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5317\u4eac\u5e02</th>\n",
                            "      <td>0.363014</td>\n",
                            "      <td>0.479452</td>\n",
                            "      <td>0.157534</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5409\u6797</th>\n",
                            "      <td>0.644231</td>\n",
                            "      <td>0.221154</td>\n",
                            "      <td>0.134615</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u56db\u5ddd\u7701</th>\n",
                            "      <td>0.675926</td>\n",
                            "      <td>0.069444</td>\n",
                            "      <td>0.254630</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5929\u6d25\u5e02</th>\n",
                            "      <td>0.321429</td>\n",
                            "      <td>0.375000</td>\n",
                            "      <td>0.303571</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a</th>\n",
                            "      <td>0.487179</td>\n",
                            "      <td>0.333333</td>\n",
                            "      <td>0.179487</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5b89\u5fbd\u7701</th>\n",
                            "      <td>0.582418</td>\n",
                            "      <td>0.115385</td>\n",
                            "      <td>0.302198</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5c71\u4e1c\u7701</th>\n",
                            "      <td>0.415929</td>\n",
                            "      <td>0.197640</td>\n",
                            "      <td>0.386431</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5c71\u897f\u7701</th>\n",
                            "      <td>0.752066</td>\n",
                            "      <td>0.107438</td>\n",
                            "      <td>0.140496</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5e7f\u4e1c\u7701</th>\n",
                            "      <td>0.634921</td>\n",
                            "      <td>0.099206</td>\n",
                            "      <td>0.265873</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u5e7f\u897f\u58ee\u65cf\u81ea\u6cbb\u533a</th>\n",
                            "      <td>0.787879</td>\n",
                            "      <td>0.030303</td>\n",
                            "      <td>0.181818</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u65b0\u7586\u7ef4\u543e\u5c14\u81ea\u6cbb\u533a</th>\n",
                            "      <td>0.900000</td>\n",
                            "      <td>0.060000</td>\n",
                            "      <td>0.040000</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6c5f\u82cf\u7701</th>\n",
                            "      <td>0.437956</td>\n",
                            "      <td>0.350365</td>\n",
                            "      <td>0.211679</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6c5f\u897f\u7701</th>\n",
                            "      <td>0.759124</td>\n",
                            "      <td>0.065693</td>\n",
                            "      <td>0.175182</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6cb3\u5317\u7701</th>\n",
                            "      <td>0.752577</td>\n",
                            "      <td>0.113402</td>\n",
                            "      <td>0.134021</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6cb3\u5357\u7701</th>\n",
                            "      <td>0.641509</td>\n",
                            "      <td>0.071698</td>\n",
                            "      <td>0.286792</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6d59\u6c5f\u7701</th>\n",
                            "      <td>0.422383</td>\n",
                            "      <td>0.158845</td>\n",
                            "      <td>0.418773</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6d77\u5357\u7701</th>\n",
                            "      <td>0.291667</td>\n",
                            "      <td>0.083333</td>\n",
                            "      <td>0.625000</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6e56\u5317\u7701</th>\n",
                            "      <td>0.629442</td>\n",
                            "      <td>0.131980</td>\n",
                            "      <td>0.238579</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u6e56\u5357\u7701</th>\n",
                            "      <td>0.806202</td>\n",
                            "      <td>0.054264</td>\n",
                            "      <td>0.139535</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u7518\u8083\u7701</th>\n",
                            "      <td>0.765027</td>\n",
                            "      <td>0.120219</td>\n",
                            "      <td>0.114754</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u798f\u5efa\u7701</th>\n",
                            "      <td>0.810811</td>\n",
                            "      <td>0.036036</td>\n",
                            "      <td>0.153153</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u897f\u85cf\u81ea\u6cbb\u533a</th>\n",
                            "      <td>0.750000</td>\n",
                            "      <td>0.000000</td>\n",
                            "      <td>0.250000</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u8d35\u5dde\u7701</th>\n",
                            "      <td>0.790123</td>\n",
                            "      <td>0.074074</td>\n",
                            "      <td>0.135802</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u8fbd\u5b81\u7701</th>\n",
                            "      <td>0.655914</td>\n",
                            "      <td>0.118280</td>\n",
                            "      <td>0.225806</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u91cd\u5e86\u5e02</th>\n",
                            "      <td>0.579710</td>\n",
                            "      <td>0.231884</td>\n",
                            "      <td>0.188406</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u9655\u897f\u7701</th>\n",
                            "      <td>0.601695</td>\n",
                            "      <td>0.148305</td>\n",
                            "      <td>0.250000</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u9752\u6d77\u7701</th>\n",
                            "      <td>0.625000</td>\n",
                            "      <td>0.156250</td>\n",
                            "      <td>0.218750</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>\u9ed1\u9f99\u6c5f\u7701</th>\n",
                            "      <td>0.580311</td>\n",
                            "      <td>0.191710</td>\n",
                            "      <td>0.227979</td>\n",
                            "    </tr>\n",
                            "  </tbody>\n",
                            "</table>\n",
                            "</div>"
                        ],
                        "text/plain": [
                            "\u535a\u7269\u9986\u6027\u8d28           \u6587\u7269        \u884c\u4e1a       \u975e\u56fd\u6709\n",
                            "region                                \n",
                            "\u4e0a\u6d77\u5e02       0.370690  0.387931  0.241379\n",
                            "\u4e91\u5357\u7701       0.762376  0.148515  0.089109\n",
                            "\u5185\u8499\u53e4\u81ea\u6cbb\u533a    0.614583  0.119792  0.265625\n",
                            "\u5317\u4eac\u5e02       0.363014  0.479452  0.157534\n",
                            "\u5409\u6797        0.644231  0.221154  0.134615\n",
                            "\u56db\u5ddd\u7701       0.675926  0.069444  0.254630\n",
                            "\u5929\u6d25\u5e02       0.321429  0.375000  0.303571\n",
                            "\u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a   0.487179  0.333333  0.179487\n",
                            "\u5b89\u5fbd\u7701       0.582418  0.115385  0.302198\n",
                            "\u5c71\u4e1c\u7701       0.415929  0.197640  0.386431\n",
                            "\u5c71\u897f\u7701       0.752066  0.107438  0.140496\n",
                            "\u5e7f\u4e1c\u7701       0.634921  0.099206  0.265873\n",
                            "\u5e7f\u897f\u58ee\u65cf\u81ea\u6cbb\u533a   0.787879  0.030303  0.181818\n",
                            "\u65b0\u7586\u7ef4\u543e\u5c14\u81ea\u6cbb\u533a  0.900000  0.060000  0.040000\n",
                            "\u6c5f\u82cf\u7701       0.437956  0.350365  0.211679\n",
                            "\u6c5f\u897f\u7701       0.759124  0.065693  0.175182\n",
                            "\u6cb3\u5317\u7701       0.752577  0.113402  0.134021\n",
                            "\u6cb3\u5357\u7701       0.641509  0.071698  0.286792\n",
                            "\u6d59\u6c5f\u7701       0.422383  0.158845  0.418773\n",
                            "\u6d77\u5357\u7701       0.291667  0.083333  0.625000\n",
                            "\u6e56\u5317\u7701       0.629442  0.131980  0.238579\n",
                            "\u6e56\u5357\u7701       0.806202  0.054264  0.139535\n",
                            "\u7518\u8083\u7701       0.765027  0.120219  0.114754\n",
                            "\u798f\u5efa\u7701       0.810811  0.036036  0.153153\n",
                            "\u897f\u85cf\u81ea\u6cbb\u533a     0.750000  0.000000  0.250000\n",
                            "\u8d35\u5dde\u7701       0.790123  0.074074  0.135802\n",
                            "\u8fbd\u5b81\u7701       0.655914  0.118280  0.225806\n",
                            "\u91cd\u5e86\u5e02       0.579710  0.231884  0.188406\n",
                            "\u9655\u897f\u7701       0.601695  0.148305  0.250000\n",
                            "\u9752\u6d77\u7701       0.625000  0.156250  0.218750\n",
                            "\u9ed1\u9f99\u6c5f\u7701      0.580311  0.191710  0.227979"
                        ]
                    },
                    "execution_count": 12,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "pd.crosstab(df.region, df.\u535a\u7269\u9986\u6027\u8d28, normalize='index')"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "We can even graph it..."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 13,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/plain": [
                            "<matplotlib.axes._subplots.AxesSubplot at 0x1152fe9e8>"
                        ]
                    },
                    "execution_count": 13,
                    "metadata": {},
                    "output_type": "execute_result"
                },
                {
                    "data": {
                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAI+CAYAAABJ+vbtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5hU9dnG8e/D0qVJEwSpYgEkCmtE2SAoEQsaW5QoUUyIEt8kmlgwRl83YCVqMJJEIr5obFhiIQgWVFQ0RBdiABWjBlSwUWwoIAvP+8fvzHJ22Cm77M62+3NdczFz2pxZveaZ3ynPbe6OiIhIWRpU9w6IiEjNpSIhIiIpqUiIiEhKKhIiIpKSioSIiKSkIiEiIik1rO4dkOy1b9/ee/ToUd27ISJ1zKJFi9a6e4ey5qlI1CI9evSgqKioundDROoYM3s31TwdbhIRkZRUJEREJCUVCRERSanenpMws7HA/wJrgF2BRtHzNsAf3H1qbNn9gXHAL4FrgSnu/n5s/tFAPjDJs2iGZWZHAp0If/83gU/dfVmm9V5b9xr73bFfth+xzlt65tLq3gWpRbZs2cKqVavYtGlTde9KtWnatCldu3alUaNGWa9Tb4tE5EnC3+Bxwpd2c6B3qoXdfYuZTQXOAK6KTZ9jZoOA28ysL9AY6Aa8DWx290MBzKwVcBPwIfBWtHpHYLKZzXL3ayr584lIZNWqVbRs2ZIePXpgZtW9Oznn7qxbt45Vq1bRs2fPrNer70XiP0BXYC+gBaFQvAQ0NbPjgEuj5XYB2pvZ6YRf/pjZscAJwOdAgbtPSmzUzLoC17v76Ni0PGBm9HgTuBFYAnwLGANMNLMD3P1fVfdxReqvTZs21dsCAWBmtGvXjjVr1pRrvfpcJN4BRkTP84GmhKIxDLjD3Z8CZgGY2RHAUGCYuxeY2YnAf939QzNrCRxtZt9194vSvF8rYDLQHfhx9O9W4AagDzDO3Tem2+F+m7+haMV7FfqwtUbh59W9B1KHVVWB2LZtGw0a7HiKd9OmTSxatIghQ4YAsHr1aubMmcO4ceMy7svWrVvJy8vbYXpxcTFbtmzhyy+/ZP369bz33nusXbuW0047LeN+VuTz1+cisR7YM3relnBOYlv0ujhp2X7AcmCYmQ0BfkQYReDuXwLnm9kAM2vk7ltSvF9z4CBCsdgduDKa3gG4CBgNrExeyczOBs4G6Na6fv4CEsml+++/n7Vr1zJr1iw+++wzNm/ezKpVq2jYsCGdO3dm8uTJDB06lKuvvpqCggIOPvhgxo8fz5133rnDtlauXMmMGTMYMmQIs2fPZunSpdx222289NJL7L333px99tm0bdsWgGHDhjF//nw++ugj2rZty2GHHcaCBQtKba+wsJA777yTtm3b0qpVKzp06EDv3r0ZNGhQlf096m2RcPfXgMEAZnYy0Cl+sjrBzBoBpwOHAxcTDkGdXkYxGArsDTyQ4v1WA9eZ2bBoey1is3uk2c+/AH8BaNK5j/fYNCWLT1eLXfJYde+BVJKV1x5T3btQIdu2bWPbtm3ccMMNzJ07l3Xr1jFv3jxOPfVU2rdvz4gRIzjllFPYZZddKCgooKioiKKiIo4++mi2bdtGXl4eU6ZMoU+fPrzwwgs8/vjjDB48mBYtWnDWWWdxyy23AHDjjTdy/PHH07ZtWzZu3EhxcTEfffQRV111FWPHjk25fxdccAG77747AL///e8ZPToc1X7kkUc4/vjjK/3vUW+LhJktAJoBW2LTxgB5hBHF8YTRxnTgFmAiYQRwoLtvjgrLP9x9tZk1AU4FDsvy7d8D4j8R2u7kxxGRSnDLLbdw7bXXUlxczKOPPkqvXr3o27cvzZs3p2vXrlx//fWMHTuW9evX89JLL/HPf/6TDh06MGHCBD788ENeeOEF9thjDyAUmxkzZvDqq69y0kknccUVV/DUU0/x/vvhwsiRI0fSpUsXAL7//e/zxRdfMG7cONavX88rr7zC66+/zuDBg2nYsGGpEcWGDRv46KOPgHD4KvG8qtTbIgGMBy4DXiAUhU8IJ5FfI5yX6E44yXw7cBZwPbAb8LyZOdAS+LaFg3xTgd8DN5nZwMQbmNnC6Ol17v5w7L17Ea6ASuhcyZ9NRCpg/PjxtGnThrVr19KiRQsmTZrEyy+/zKpVq5gyZQpbtmxh48aNbNmyhXHjxtG0aVOWLFnCRx99xMCBA1mwYAFffvklbdq04eGHH2bUqFFccMEF3HzzzfTt25ef//znTJkyhUWLFvHpp5/SsmVL5s+fz/7778+GDRvo378/zZo144orrqCgoGCHw00AAwcO5OSTT2afffahffv23H777axYsYKPP/64Sv4m9bJImNkuhC/2H7r7+2b2e2AaMAh4CNiP8CV+oruvA2ZEq84qY1tNgSfd/aFo3WxMd/fC2DZmABnvr9ivS2uKaukQXqQ2GjBgAD179mT+/PmMGjWKhx9+mOLiYn73u98xZ84cAM4991wuu+wyDjnkEPr168eyZcto27YtJ510Eu7O8OHDGTBgAMXFxfz3v//lkksu4euvvy450Txs2DAKCgoYMWIE1157LaeccgqDBw8uGUkceuihXHfddQB88803NGjQgMGDB/Poo49y5ZVXMmnSJAoKCqrsb1Avi4S7f2VmwxM3vrn7L6NZiUteLyvHtjaR4jxECi8QLrONb+OscqwvIjkQ/+IdMGAADz30EKeccgrNmjVjxYoVPPjgg+y11140aNCAgw8+mMcee4yjjjqKxYsXl1yVlHw1UadOnUrON3Ts2LFkesOG27+K77///pL3Tx5JfPzxx7Ru3RqATz75hOXLl1feB06hXhYJgGzujK6i991KuPRVRGqojRs3MmbMGNavX19y9dGqVat4++236dSpE5999hlDhw7lgAMO4M9//jMPPPAAp512GldeeWWZ23v22Wfp27cvTZo0oWvXrgBcffXVnHjiieXar6KiIvbdd18OOugg7rvvPvbYYw+eeeYZ8vPzd+4Dp1Fvi4SISCrNmjXjpZde4pJLLqG4uJgbb7yRyy67jBEjRjBs2DAgXI7aoEEDZsyYwRVXXMGvfvUr3nnnHfbcc8+S7WzZsoWioiJuu+02pk2bxrvvvltSSLZt27bD+z722GNMmhTuy00cbgIYN24cnTp1om/fvnz44YcUFxfz1FNPMW3aNP74xz/y73//mw8++KDkqqfKpCIhIlKGBg0aMHnyZDZu3Mg111zDvffeu8Olqd27d2fNmjXstttuLFu2jMLCQv7whz+UzG/UqBFPPPEEQ4YMobi4mIEDBzJ//nyAMs8jHHPMMRxzTNnnHWfOnMmNN97IHXfcQd++fZk0aRINGjTgd7/7Ha+88gpPP/00P/zhDyvt8ydYNR11kQrIz893hQ6JVMwbb7zBvvvuW927Ue3K+juY2SJ3L/OYlVqFi4hISioSIiKSkopEJTKzgqiNh4hInaAT12mY2a+B70Uv2xJusEvcA7/Y3c81s2nAIuAOwh3afzGz+GULs9x9SWybFQocAoUOgYKGpH5K1WU2FzSSSCMKAXo/xezzo2XOIQQM/ZbQ4+l5Ql+mxOMTCIFD0Z3VQ4HEHTYdgVujYiQi9cz06dO5/fbbd5j+zTffUFhYyLx58/jqq68488wzc79zEY0k0jCzHwFPRC8HEWJO50WvzzCzt4CfAHcReju1I4w8ehGS55q6+/4KHBKpeXpUcsfhbLveJu59AEoCgBKdYZs0acJzzz3HmDFjsuoymwsqEul1Yvtoa3X06BSb/wChn1MP4BpCyt3DwHnAhYRYVKiEwCGoxaFDChISKbFw4UIWLVrEnXfeyZQpofX/RRddxIknnsjBBx8MkFWX2VxRkUjD3a82s+XAZ0mzert7BwAzm0sYPVxFCCs6g1AUBgO9zex8QjEpd+CQiNRN+++/P7/61a9KXi9cuLCkiV+2XWZzRUUis61A8onl+L3vw4GewBzCIadRhLyI94Gz3D2RElTuwCFQMp1IXZSXl8eIESO4++672bp1K8OHDy85MZ1tl9lcUZHILA/onzStWez50YRzElcB9xIOOa0n/G1bmtlUd4+3aixX4FCdSKZT2pxkqbam2VXEhRdeyMiRI9m8eTPPP/98yfTydJnNBV3dlNkGdx8cfxCCiTCznsAhwD+A5e5+kLt3cff9CBkU5ycVCAgntUfEHgocEqlntm3bxt/+9je2bt3KrrvuysSJE9m4cWPJvI8++oihQ4dy1FFHMXPmTMaNG8f8+fOrNDciFRWJcjCzXczsecLoAuAL4AJ33xpdCptY7llCnOlTZWxmelLBmU0WgUMiUvutXbuWq666ikGDBrF8+XKefPJJ5s6dyx577MGQIUM477zz+PjjjznvvPPo2LFjxi6zuaDDTRnEm165+1eE+xwSr9dRRiFw9+EpNrdTgUNKphOpPNVxaGuXXXZhjz324LnnnqNVq1Yl08ePH89PfvIT5syZU2p6pi6zuaAusLWIusCKVJy6wAbqAisiIpVGRUJERFJSkRARkZRUJEREJCUVCRGRHFuzZg3Tpk2r7t3Iii6BFRHJsXPPPZdTTz2V6dOnM3369JLp++67LzNmzCh5PXXqVNq0acPKlSspKChg2LBhOd9XFQkRqZ8KW1fy9rLrdnzppZfSsGFDTj75ZADGjRtXuftRyVQk0jCzLwj5Dy3cfd9o2nx3HxZb5kDg5uhlh+jfxsAGIPF/zQXu/mJsnQql0ymZLjtKr5Oa6r333uPVV1/lvvvu47jjjuPuu++mZcuWOyx3+eWXc9FFF+0wfdmyZSxevJgzzjgjF7sLqEhkshiYBuxrZgujaX1jz09191cIbcExs7HR9K5Akbs/Ht+YmbUCbgI+JIQSQUinm2xms6IkPBGpo7p168acOXO47LLL6NOnDxMmTGDx4sVs3LiRDz/8kF69ejFhwgS6devGzJkzd1j/5ZdfpnHjxjndZxWJzC4GDgPaE4KF/kpIk7vQ3d+FUlnY8ZHE6WZWCDzq7tconU5EAK699lquuuoqNm7cSNOmTYEwQpgyZUrJ+YnPP/+cMWPGMHLkyFLrPv3000yePDmn+6sikdnDhIyIPwInE4KF/ge4zcwauPs2oDcwFjgWeJfQ6fVV4G3gkmg7O51OV+uS6ZRIJ1LK4sWLWbZsGYMGDSopEGVp3bo169atKzXtrbfe4rPPPqNLly5VvZul6BLYzK4FLgV+DowkBAwdBfyMcFgpoQFwHKGBnxNGE2fH5jcnpNPtxfZ0unsIo49CYLey3tzMzjazIjMrWvO1+myJ1GYDBw7krrvuokWLFhmXnTt3bqnX3bt359Zbb62qXUtJI4n0GhE6t85191+Z2fXArcBYdx+ftOwU4Al3X2VmLxJGCCVJIu6+mgqk08VDh/J3z6tVVaKyg+albqhPwULZijdafeyxx5g0aRIAH3/8MXl5eWzevJl77rmnpEPsgw8+SNeuXcvcVmVTkUhvi7sPATCzboSQoF8DZ5hZV3dfFVu20N1fAnD3BcBBZrYn2w83xZUrnS5hqfeiVibTidRENeRw6P/+7/8ye/ZszjknRNIcc8wxHHNMzSmkKhJZMLO+wP3AL9x9i5ndQhgpnBpb7E9mtilp1SbAojI22YtwOCpB6XQi9cj8+fNLnk+cOJGJEydW385koCKRgZkZ8AfgYnd/BsDd55rZaDMb5u7zo0VHJ0eVphlJTHf3wthyM8ginU6hQyKSayoSacRumhtRxrwzY8/LvGXS3d8GkuftVDqdiEguqUjkmLtvJVz6KiJS4+kSWBGRWm7t2rUsXVo17Wg0khARqQbz589n9uzZjBo1itmzZ3P99deXzCsoKKC4uLjM9bZs2cKiRaWvh3nkkUfYvHkz++1X+b3dVCREpF6q7GaZ2TaWPOqoo/jyyy/5/PPPS9pu3HPPPSxYEK6Kv/POOwH47ne/y7PPPltq3X79+rF69eqS10ceeSSfffYZS5YsYcCAASXrJlx++eU7fTmtioSISA498sgjuDvPPvssTz/9NACnnXZaqZEEUHJD3cyZMykuLmbMmDEAjBo1qmSZxx9/nNdee40TTzyRCy+8sNT6RxxxRMnNdztDRUJEJIf+/Oc/s2DBAj755BO+/e1vA/D3v/+dlStX0q1bN2688UYgHI667LLLWLt2Le7OLbfcws9+9rNS2youLuanP/0p7dq1Y8OGDSXT77jjDvbZZx/69++/0/urIpGl6H6J5kA7QnO+/sBr7v580nLdgQ/d/Zvc76WI1HTnn38+559/Pg899BB33HEHGzdu5Nhjj91hJDFs2DAWLFjAzJkzWbNmDW+88QbHH388d911FxBaeZxzzjkccsgh3Hbbbdxyyy0l665YsaLS9ldFIgMzOx34KaH7awvACJ1hXwP+U8Yq/YA/m9kxHm/IsuN2xwBN3X16qmWS1fXQIYUFSV03f/58CgsL+fTTTzEz9t57bxo0aFDqnMSECRMA+Oc//8mnn37Kv//9b7Zu3Ur79u1LRZ2++OKLdOzYkTPPPJNVq1aVFA+A8eOTW8tVnIpEZj8m/J0aEkYSrQitw0cBmNkPCZkQlwOJVt9tgH+EwQcQbsbbC/hTbLvtw+oWv9nu4uSRiYjUHQMHDuT222+nR48enHjiiYwfPx4z2+GcxA033MDq1av54IMPSrUGj59jKCgooKCggOXLl/PEE08wePDgknkrVqzY4dBURalIZODuh5nZxYR7SnoBewJPRrPvdfd3zWwI8Ht3vx3AzO5z91OTNrWYKMEuWqbcIwkRqd1atWrFhg0bOPfccykuLmb48OGl+jjFJc5NJNu0KblFHIwcOVIjiWp2BiH/oTlhBLCSEEBURAgZAhhoZon/MvGIU4Cz3X2JmXUkhBG9F22nQTSS6ASckCmVrtaFDpVXRYLpa0gnT6l9quvw5qWXXkq3bt246aab0i6XOPyULH51U1lOPPFE3nrrLa6++uoK72OcpTlsLhEzWwe8AbSOHu8B3YAfufs8MzsH+Mrd7zKzZsBjwDZ3H5G0nU7ALe5+fDSSaOHut0Q5FTPdvSjdfuTvnudFZ2cOK6lXVCQkS2+88Qb77rtvde9GtSvr72Bmi9w9v6zl1ZYjO0uAhcDrwOro+WIgcc1ZB+DT6PmpwBPAy2Z27M6+sZLpRKQ66XBTBmY2EGgGFBBOWreKnsP2HIhDgDvNbC9CzOlQQpbEnKhCf5Bm+w2APFK0Co8n0zXp3McVOpRE6Xc1ktLn6g4ViQzcveSEcxQ9OsLdL0vMN7PBhMtihwG/AMa4+1fAV2b2P8CDZnZG1DZ8E0ltwglJd3sDyxGRKuXuxK46rHcqcnpBRSKNqADEf7q3AlqZWfxcw3RCZkRvYGhUIABw90Vm9mNCccDdPwMmx9/D3a+qot0XkZimTZuybt062rVrVy8Lhbuzbt06mjZtWq71dOK6FsnPz/eiorTntkUkhS1btrBq1aoyLyGtL5o2bUrXrl1p1KhRqenpTlxrJCEi9UKjRo3o2bNnde9GraOrm0REJCUVCRERSUlFQkREUlKREBGRlFQkREQkJRUJERFJSUUig6hhX7bLdjCz4VW5PyIiuaT7JNKIIkvvM7O/AgcCQ5IWucrd58ZeFwOjzWywu1+TZrtHEtqDNwTeBD5192WZ9qeuJ9OVh1LsRHJDRSINd3czOw2YBRyZyK02s27AI8DL0euPgfdjqw4ys5Oi592Aw9x9mZm1Am4CPgTeiuZ3BCab2ax0hUVEpDqoSGTg7hvM7PCkvOo7gfHuvi56/Yq7l5kEYmaTga1mlgfMjB5vAjcSWpB/CxgDTDSzAzIFD4mI5JJ6N6VhZicCE4CX3f3n0bSGwCOpikKabe1KKAjdCYetjgb+SxhZfAU85+4bU2+hhoUOKexHpM5Q76YKcveHzGwxUJhqGTPrDdwXm9QcaAesiE2bRIgtPYjQSXZ3QhwqhMCii4DRhFjU5O2fDZwN0K11/etcKSLVS0ViJ7n7O0BJBTazfGCcu5eVRH5dlElxOhAfEvRIs/2S0KH83fM07BORnFKRyGxv4NvRYabGwJOE+NKd8R4QTzlvm81KS70XNSaZTolwUk2UepdbKhJpRPdIXE44LzEF+KW7F6RfKyu9CAUnoXOqBUVEqpOKRHpHALe4+9/NrC2w2My+is034DfuPg/AzC4CxhLS6tKZ7u6FJRsxm0GKjOu4/bq0pki/okQkh3R1U45Fl8LmJe65KA8l04lIVdDVTTWIu28Ftlb3foiIZEO9m0REJCUVCRERSUlFQkREUlKREBGRlFQkREQkJRUJERFJSZfAZhC14xgWvfwx8ALwH+ALd385tlwBcKi7X2Vm84ERQFeg0N3HJm2zToYOKQhIpO7RSCKzFoR23v0JHVv7RM9vSlquIZA26tTMWkV3Vw8l3K0NIXToVjP7dWXutIhIZdBIIrNi4EtCK+89CCOADcAbiQXM7H+ARsAJZvZmNHkWoedTYhmFDolIraO2HGmY2eHAL2OTGgDbkhb7EXAv4Uv/cGBfwohiBjAAaOfuY2t06JAChETqtXRtOXS4KQ13fzpKoBsCtCe09G4fPYjm9SK0Dt8IfEb4wgeYSygYCc0JoUN7sT106B7CIaxCYLeq/TQiIuWnIpGd19x9MPAAcGH0HAB3X+juvwF6AmuBU6LpnwDnxpZb7e7XAU8RzmmMjj16pHpjMzvbzIrMrGjN1xr1iUhu6ZxE+RwEzE6eGJ1vOJuQSLfNLGPMaNahQ/Fkuiad+3iVhA4pQEikUtTFQCQView8bWa3ES59PcHMvgM8DSUF4hZgnbsnrgFdnWF7Ch0SkVpBh5vSMLODzewZwi/9v7j7Ze5+LXASsJuZnQU0JVwW++PEeu5+eoZNT3f3wYkHYXSiY0kiUuPo6qZKYGbmWf4hFTokIjWNQoeqWLYFIlpWoUMiUmvocJOIiKSkIiEiIimpSIiISEoqEiIikpKKhIiIpKQiISIiKalIlIOZnWxl9NyIOrzGX/cxs3652zMRkapRp+6TMLMDgZujlx2ifxsT8h8S/bAnALsCXYDjgT9G068ELoueP+nuXydteyRwhrs/WMZbnx6lzY129w3ARGA68FrSNu4C+gGbU3yEoelusqvpyXQ1hRLyRCpPnSoS7v4KMBjAzMZGk7sCRe7+eDS9O6GANCO01GgfLdcA+D7wCfBsYptmtgpYBbQEvjGzhYQ0uRPc/d/R+041sw+AAjNbTUizW2Rm84Az3T3ey+kHwG+AX7n7GjPbCzjN3Qsr828hIlIZ6lSRAIhiQL9H6ZHE6WZWCDzq7teY2d3A48A7hLbdAMsJf49ioA3bRx6r4q3Bo/e4nZBElxi9jAUuJrQLnwr8FTiY0Ol1jpkd5O6botU3AVOAh8zszGj5Cyrp44uIVKo6VySA3oQv7WOBdwkdV18F3gYuiZbZlxBDOo8w8tgd+BuwEjjC3d+Nba9fNHpIfo+pEEYvZtYbuJYQR/oiYXTSmNA19l7gMGBOYmV3XxQ1B5wDzIl1j02rX7t+FJ2p3k0ikjt1sUhAOHR0HOHQTk/CF/bZAGbWldCx9fvRsntG81sDBxIKS9xrKUYSJdx9ppktibb1Y0p73N3nsKNdgS+AQ8yspbt/WdYHMbOzE/verVu3FB9XRKRq1NWrm6YAT7j7KsIv+98AiauSOgN/IHyhA/wDeBRYTxh9PJe0rX5mtjD+AMpKFplAaCm+KtYCfHzsfUqY2WHANOBE4ProeZnc/S/unu/u+R06dEi1mIhIlairI4lCd38JwN0XAAeZ2Z6Ew02LgTcIh4K+JmRLDwTOIPxiX2xmzdx9Y7StjCMJM8snjFiuAEZl2LeehKufRrn7B8CDZnakmXVz9/fSrbh09ef0UIqcSE7VxbS58qirReJPZrYpaVoTYBHwI+B5wuGo6YRM6k8I5yc2AoXAPUDi27i/mSWfCOhBdE7CzNoCdxDOgwAMj53DaE44TxF3I/AN4cR1fPr9ZjbJ3VUFRKTGqKtFYrS7L49PiI0k/gFsIfyif55QOFoCPwcuIlz19IvYqssyjCT2Av4UncDuATzr7idHy/Vn+8nyhBPcfeVOfDYRkZxRMl0GZpYXBQXFp2WdRFeZlEwnIlUhXTJdXT1xXWmSC0Q0TZVVROoFFQkREUlJRUJERFJSkRARkZRUJEREJCUVCRERSUlFQkREUqqrN9NVKjObT7hT+tIyZj8MPB09f4dwk94+hOaC1wGr3X1F0vaOJHShbQi8CXzq7ssy7UdtDB1SAJBI7aaRRBpmdmDUYmMg8G1CK46thEyIzYRWHvOAk4EZQD4wKHrsRug0e15se63MbAYwlO0NBzsCt0Y5GCIiNYpGEmkkku7M7BeEEKL2hA6zLxA6vl4cZUO8RygiPQitwpsSMiqaAh3M7P8IUaYzo8ebhJHJEuBbwBhgopkd4O7/yt0nFBFJT0UiAzNrTjh0dChwOHAmcFI0O9FW/H8JzQE7APcTDjcdROgN9Za7LzGzXYHJQHdCIelOGJXcAPQBxsU6z5ap3+ZvKFqRtlHsdoWfZ15GRCQDFYnM/ggMAM4nJMy1AfIIX/C9zOw2wrmHhoTRQWIE0ZkQYvR1tJ3mhMLRKlrmymh6B0JjwdGEZDwRkRpDRSINMzsJeI/QKXYr4XDTzwghQecQikMDQnvxZwjBRf8HdAVOAG6OtrOru68GrjOzYcDpQIvYW/VIsw/bk+laW6rFRESqhIpEeg+5+9/M7FB3v8HMfkA4lNQs+rdltNzLhLS7K4ARhGjSLtFzCOcjPo1t9z1gQex121Q74O5/Af4C0KRzH++xaUp2e65wIpEapbaGF6lIpFFGt9ddgXGEK5fGEc4rfJswapgHfI9QQHoQRhMbgEbAXCB+GWwvQq52QufK33sRkZ2nIlE+K9w9MTrAzB4h3Bvx4yiKNFvT3b0wtp0ZgNqPi0iNo9ChHDOzPCDP3b8p77oKHRKRqpAudEgjiRyLQox2CDISEamJdMe1iIikpCIhIiIpqUiIiEhKKhIiIpKSioSIiKSkIiEiIimpSIiISEq6TyILZjYa6Oru10evfwZscvfp0esOwN+jxTsRAjuXenkAACAASURBVIkSvZqucPcnkrZXq5PplDYnUn+oSKRhZoMIHV93BRpHxQJCe283s/HABcBRwPxoXj4hoOgtYH/gZ2a2NgonagXcBHwYzYeQTDfZzGa5+zU5+FgiIllTkUjD3RcB+elGEtEoYo/Yal2AtcAyQgHYBHwateNQMp2I1CoqEjvJ3deY2RPseLjp4Oj1Fe7+35wn01WlwtbRv0q/E6nrVCSy93MzOzl6vhtwVWzeYOCHhMNI4wgJc48SWoZ/K1qmQsl0Ch0SkeqkIpG9m5MON8V9i3Ci+lLC4aWmwHGEsKDBwCMVTaaLhw7l756nlr0iklMqEpWjAdAO2At4gDAi2BsYlGL5rJPp4pZ6L7JOpssFpd9JPVRbE+YqSkUie+clXd00KTZvEGEkMYFwdRPA74HxwBdlbEvJdCJSK+hmuuzd5O75UTDH7xITzWwE8LK73+zuJaMDd18C/DXFtqa7++DEA5iNkulEpAZSMl0WzMygzMzrimxLyXQiUqMomW4nVUZxiG1LyXQiUmvocJOIiKSkIiEiIimpSIiISEoqEiIikpKKhIiIpKQiISIiKekS2FqkpoQOpaNAIpG6RUUigyhYqJG732xmC9y9wMwKgVMI7TmOovTfcSTQBJgVm/aOu6+JbbNCyXQiIrmmw00ZuPstwL5m1jJp1i+AJwi9mfJjj16ErIj4tHYAZtbKzGYAQ4FE3++OwK1m9usq/igiIuWmkUQaZtYGOJnQg+kpoK+ZLQS+JowWegLfAL3ZHjLUllB8e0evX3b3qZWRTLfToUMKCRKRctJIIr3PgQ3AUVEjviXRv88TIkq/jpbrA4wC3geOJoweVgMjCO3DIYQNTSaMIBLJdP0onUyn6FIRqVE0kkgj6tk008z6m9lLQFMz+xj4M9CI0kW2O7CKUAgaE1qH7x2br2Q6Eal1VCQyMLNmhGyIb9z9EDNbQEie20woFAnbgEWEw1CNgflAcWJmZSTTNencx3cqdEghQSI5V9tDilQkMjsC+AdwdHQ+Ym/gE+A8wuGi+HInAO0Jh5T6E3IiylKhZDoRkVxTkUjDzBoCE4EfAEPdfZiZdQHmuvv7iZyJyDR3v87MxgBN3X16dEVUQRmbVjKdiNQKKhLp7Qo84+6vm9lZ0bRxwFQzm0Q4x/BJWSua2eHAVMJVUcmmu3thbNkZZJFMt1+X1hTV8qGriNQuSqYrJzNrDGypaBCRkulEpKZRMl0lqsiXe9L6SqYTkVpD90mIiEhKKhIiIpKSioSIiKSkIiEiIimpSIiISEoqEiIikpIugc0gi9ChA919ZbTsbcDVwHeAhu4+PcU2KxQ6VBuS6aqLEvFEqoZGEhlkEToUl8f2MKEdKHRIRGobFYk0zKyNmY1je+jQgKjJ31DgcELoULr1O5nZTWbWIBY69CzwKKG9xyDgAkLoUH8zO6DqPo2ISPnpcFN6pUKHkg43fUkIHepoZg9Gy/dge07ET4DTgCvcfZuZ7UrImujO9tChrZQOHdqYbmd2OpmuKin1TqROUpFII8vQoU8SPU/M7PbY6ve7+w2x1wodEpFaR0Uig3KEDiX7PFq/DfBFZYQO5e+ep26MIpJTKhKZZQodamNmw4EBwIFlrH8OsAK4PzatQqFDS70XO5VMV5WUeieVpLYnudU1KhJpZBk61JpQSF4ElkerLgXuji6fbQEMSdq0QodEpFZQkUgvm9Chn7j7cwBmdjKAuy8C9kmz3QqFDomI5JpCh8pJoUMiUtcodKgSKXRIROoT3UwnIiIpqUiIiEhKKhIiIpKSioSIiKSkIiEiIimpSIiISEq6BLYczKwA+Ke7b6mO91fokNR1Co+qeVQkMjCzacAi4A5CHsRfzGxbbJHngfi9EyOBJsCs2LR33H1NbJsVSqYTEck1FYkM3P0cM7sS+C1wC6Ub8yXE71TsRfi7xqd9Bqwxs1bATcCHwFvRvI7AZDOb5e7XVPb+i4jsDBWJNMzsUEJ40F3A9UA74HuEQvAW0NTd9zezE4CDo9XaEs719I5ev+zuU2PJdDMJo4cbgSXAtwjJdBPN7AB3/1eq/clJ6JDCg0QkRieu04ga980i5D1cA0whZEHMBIYTZUYQkuVGAe8DRxNGEauBEcBe0TKtCMl0xvZkun6UTqZLWSBERKqDRhKZzSWMHq4CioEzCF/4g4HeZnZ+tFx3YBWhEDQGPiVkTyQomU5Eah0VicyGAz2BOYRDTqMIoUHvA2e5+xQzGwFsI5zgbkIoEvMJRQWAykima9K5j1d56FA9DA9SyI1IaioSmR1NOCdxFXAv0BVYT/jbtTSzqdFyRwAnAO0Jh5T6A7NTbLNCyXQiIrmmIpGGmfUEDgH+B1ju7ufE5l0M/Nfdl4eAOqa5+3VmNoZwQnu6mbUECsrYtJLpRKRWUJFI7wvggigDIl4gniWcWzgs1YpmdjgwFXiqjNkVSqbbr0trinRoRERySMl0OaZkOhGpaZRMV4MomU5EahPdJyEiIimpSIiISEoqEiIikpKKhIiIpKQiISIiKalIiIhISroENg0zawtMA35N6MN0JTCe0HCvJ9AU+A2h62s+MMmzuPGkoqFDSqarX5TSJjWBikR6jQgFYjShJ9MAYBzhTuvj3T3RwG+OmQ0CbjOzvoSWG92At4HN7n4ogEKHRKS2UZFIrx2htcYYYDegCzAPuBxYEPVs+ivwtrtPSqxkZl2B6919dGzaTocOiYjkmopEGu7+upn9FtiVkA/hwHeAZ9ne4fVvwCQz+667X5Rmc4nQoe5sDx3aSunQoY3p9icnyXRVRYl3IrWSikRm/wR+RWgPPhJ4Iz7T3b8EzjezAWbWyN23pNiOQodEpNZRkchsb0JWxEfA34E7gYllLDc0WvaBsjZSGaFD+bvnqRujiOSUikRmhwO/A14j/PrfE/hvfAEzawKcSprW4UkqFDq01HtR5cl0VaUeJt5VBqXmSXVTkUjDzBoAxxHS6ToSzkn8gHAeYWC0jBFObv8euMnMBsbWXxg9vc7dH45tWqFDIlIrqEik1w+4j3Ap7CzCr3939yWxYtAEeNLdHwIeynK7FQodEhHJNYUO5ZhCh0SkplHoUA2i0CERqU3Uu0lERFJSkRARkZRUJEREJCUVCRERSUlFQkREUlKREBGRlFQkMjCzZtW9DyIi1UX3SWT2czPrCawDRsSmt4oeNwPPxaaPJNyFPSs27R13X5N4oWS6mkPpbyLpqUhk4O6TzexiYJ67X5aYbmYjgALgYUKX2IRehL9r/O7Fz4A1SqYTkdpGRSINM/s2cAFwDtA61rDvP4REOtz9P2b2U+DgaF5bwmG83tHrl919amUk01VJ6JDCgEQkDZ2TSMPdXwZuAy4FmgGvuvtgwmghrg8wCnif0DE2H1hNODy1V7RMIpnO2J5M14/SyXSKLhWRGkUjiQzc/Ukzawo0zbBod2AVoRA0JsSd7h2br2Q6Eal1VCSy83PgPOAEM9uf0Do82TZgEeGkdWNgPlCcmFkZyXRNOvfxSg8dUhiQ1HAKXqpeKhIZmNmhwOuEIvCwu483swVlLHoEcALQnnBIqT8wO8VmK5RMJyKSayoSaUSHmX4LnB6NBMYDuHtBdHVT3DR3v87MxgBN3X26mbUkXAGVTMl0IlIrqEik1xOYGhWIEmY2lTByuDTVimZ2OCHW9KkyZlcomW6/Lq0p0tBbRHJIyXQ5pmQ6EalplExXgyiZTkRqE90nISIiKalIiIhISioSIiKSkoqEiIikpCIhIiIpqUhkoNAhEanPdAlsZplChya5+zQAM7sNuBr4DtDQ3aeXtcG6GjqkAB+RukcjiQzcfTKwAnjI3QcnHsAvCHdOT4stnkfo21QmM2sV3V09NLZcR+BWM/t11XwCEZGKU5FIw8y+bWb3EbqwrjOzhdHjr1mu38nMbjKzBrHQoWeBR4FxwCBCqNEYoL+ZHVA1n0REpGJ0uCkNd385OoR0KfB/hNChUl1gzawjMCd62YPtORE/AU4DrnD3bWa2KyFrojvbQ4e2Ujp0aGO6/amSZLqKUJqdSL2hIpFBptAhd/+EKM/azG6Pzbrf3W+IvVbokIjUOioS2ckmdCjZ5wBm1gb4ojJCh/J3z1M3RhHJKRWJDDKFDkVF4ABgAHBgGZs4h3Di+/7YtAqFDi31XlR6Ml1FKM1O6pH6noynIpFGlqFD3yJkS7wILI+mLQXuNrPxhBHDkKRNK3RIRGoFFYn0MoYOuftzwHPR9JMB3H0RsE+a7VYodEhEJNcUOpRjCh0SkZpmp0OHzMyAgcAuiWnu/nzl7F79otAhEalNsj3c9ADh5GrisIsDKhIiInVctkViN3f/TpXuiYiI1DjZtuV4y8x2r9I9ERGRGifbkcQQYKWZrSccanJ3V9EQEanjsioS7r53Ve+IiIjUPFkdbjKzfmb2TzNbGXVB7V/VOyYiItUv23MSfwB+4u49CHcd31RleyQiIjVGtuck8tx9CYC7vxrdEFYvmNnRhC6vk7yMOw/N7EDg5uhlh+jfxsAGoiZ/wAXu/mJsnTqZTFdeSrITqfmyLRIbzWwU4d6I4cDmqtulmsXd55jZIOA2M+tLKADdgLeBze5+KDAYwMzGRqt1BYrc/fH4tsysFWEU9iHwVjS5IzDZzGa5+zVV/XlERMoj2yJxDiEc5zrgDaJ8g7rOzJoDBe4+KTatK3C9u4+OTfs18D1KjyRON7NC4FF3vyaWTDeTMHq4EVhCaBA4BphoZge4+7+q/pOJiGQnbZEws4buXgx8RMhAMOpXI7o84Ggz+667X5Rmud7AWOBY4F1Cl9dXCaONS6JlWlHTkumUMCciGWQaSfyVEMH5JtuLQ6JQ9KrC/aoR3P1L4HwzG2Bmjdx9S5rFGwDHAT8gdI9tTOkRl5LpRKTWSVsk3P206N+eudmdGmsosDehh1UqU4An3H2Vmb1IGCGU9LeqjGS6Jp37eKWGDik8SCRr9TV8KNsusP9JWraYkK42IcpOqLPMrAlwKnBYhkUL3f0lAHdfABxkZnuy/XBTXIWS6UREci3bE9dPAw8TfhkPIRxT/zPh13OdbfwXtUifCvweuMnMBsbmLYyeXhf9+ycz25S0iSZAWUVUyXQiUitkWyT2cvcno+dPm9ml7v6CmaU7Rl8XNAGedPeHgIdSLWRmxwCj3X150vRUI4kKJdPt16U1RfV0yCsi1aM890mcSzhEcgjwtZkNIPs7tmsld99E+vMQieXGpZj+NpA87wXgpaTlzqroPoqIVKVsv+TPIFyyeTXhyp0zgS6EFh1SDu6+tSLRpSIi1SHbLrDroyt23gdeBDa5+9wq3TMREal22V7ddCNh1HEIsB74NXBKFe6XiIjUANkebjrQ3c8HvnL3ewi9i0REpI7Ltkg0ivoYedSDqLgK90lERGqIbK9umgO8QmghsZDQnE5EROq4bIvEoYTzEX2AFe6+rup2SUREaopsi4QDM4ga/ZkZ7n5p1e1WzZEpdChp2QXuXmBm+xO6uv4sxXIKHSonBRSJVI9si8SdVboXNVim0CFC++/Lo8X7Ru06mgMdzSw/mn5y1PhPoUMiUqtke5/EHVW9IzVRtqFDwGPRvAmEPlcfA9+JrgRLrKfQIRGpdbIdSdRXWYUOmdnlQKKp0qWE9L7GZrbU3RPHSWpe6FBtUti6uvcgM4U4SR2kIpFGtqFD7j7JzFYBywiN/i4wsz8CA8zsfXf/jAqGDomIVCcVieykDR0ys+8Srv7qBjwTTe5EGIncAXyvoqFDSqYTkeqkIpFBptChKHPiPMLJ6z8AifMXnQhF5WAz6+fur8VWyzp0qEqT6aRy5Sjpr74mpEn1UJFIoxyhQ78BbgV+yvZciJbuvtHM/sfdtyVtWqFDIlIrqEiklzF0yMz2AaYDP3b3pWZ2mJlNIcq3LqNAQAVDh0REcs0y3B8mlSy6FDavIpkS+fn5XlRUVAV7JSL1mZktcvf8suZpJJFj7r6VcOmriEiNV6fjR0VEZOeoSIiISEoqEiIikpKKhIiIpKQiISIiKalIiIhISrWmSJjZ96J/25jZUDP7kZm13Mlt7lnO5U+O7sJOnr5r0us+ZtZvZ/ZNRKQmqNL7JKIEtgJ3v8zMmgIHAyOAw4GrCO0sWgB/BM4sYxNXuPsTZtYd+AHwaLR+Z+C/wATgstj7TQf6Ry8HEPIaEpa5+7jYss0JAUBZNcIxs5HAGe7+YBmzT48+62h33wBMJNyF/VrSNu4C+hHCisoyNN1NduVNplOam4jsrCopElEwz2xgG/CNmZ0A3EsoDjcQvkS/AZYSmudtBAz4EhgELALy3f2JaJM/JfRO+iFwMiF/4Qsgz8zy3f1IgKQisNjdB6fZzV8Ce5hZvNFeK+DeeEJc1AJ8FdAy+iwLCWlyJ7j7v6P3nWpmHwAFZraaUPgWmdk84MyoA2zCDwjF8VfuvsbM9gJOi7fpEBGpKaqkSERRnecD3ye0yh4NLAT2AjYB3yEUhDuA+UR9jghfxv2jf/eDkkM5BxI6p/6QkMnQmPBLvdDdVybe18w6AH8nfEl3iL7QDSh29yGx5b4NHAvsD/QMu+z/NbPfEwpX3KrkYmNmtwONoucHAmOBi6NtTQX+Shg1LQDmmNlB7r4pWn0TMAV4yMzOjJa/IOMfVUSkGlTVSGIgcC3QGjgOWE1oRdEeOIswwpgOvE8oHuuBIkJmwzKgK9u/rHsBbQijj2cIv+IXAL2Bb5nZ6+5+enQ4Kw84nvBrvQWhM2s3YIKZdQI+JxSfO4Dj3X2bmQ0HigmHr/5JFEUa0y/W8TWhN+HLHXd/xcx6R593CfBi9DkbA/8hjKAOA+YkVnb3RWZ2VjRtTiy9Lq1yJ9OlSnNTgpqIZKmqRhKLgcHRcfp8d7/SzI4gjB4+IHwpvwV8BexB+CLfm9JBPJjZyOicxCLgbsIhpq6EEKDkkcQ+hKzouAujf1dEz2cSTtYfD7wTnSOYH73XX4ArfceOh6+lGEnEP+9MM1sC7EmIJo173N3nsKNdo89ziJm1jFLwdqDQIRGpTlV24trMniMcJvrCzEYRflF/EVvkAGAYYbTxf8DRhNHEscDjwHcJx/X3A44kjESeIhSYHUYS7v4q8KqZ3RPNi3/Zf+DuJybt3yXAv2KTpgAPmNkR7h7/qZ12JBEzAXiWcHjq5Og99md7oYq/92HA9YRR1mBgGnBa8nJQOnQof/c8tewVkZyqyqubridcPbQWeAVoB/wD6BLNXwC8A3wMfB1N20AoBhsIxYAoo+FwYBThi7QxUEAZ5yQibYHDo6uMADCz+fEFol/nI6PHGdH7vG5mtxEOa50XWzzjSMLM8gnnI66I9jOdntF7jHL3D4AHzexIM+vm7mmPJS31XlRKMl2OEtREJPcqO7mwqs5J7Ev4or2YcBjoY8LVRNey/RfzYcD9hHzn9URXNBHODXyLcKL6GzPrAfwWuIfw6/0pSo8kNgNj3X15bBeeMbN42E/ipHEijnQwcKy7f5N028NtwB/NLC9q6Q3Q38ySQxx6RPuCmbUlnOMYG80bHht5NKf0ZbgANxKu7Hoo6b3vN7NJ7q5vcBGpMarqnMQb0X0F340mvQLc6e5fx74Y/w7MI1x2+hyhMCT7qbtfR+xQTLR+gbsXp9mFw1KNJNx9M/CjaPq5hGL2i2jeVmB80raWZRhJ7AX8KTqB3QN4Nna4qT9wSdL2Tihj9JOV/bq0pkj5xiKSQ3Uumc7MmsYuN62M7cVHFYlpVsYJ7iqnZDoRqQrpkulqTVuObFVmgYi2t0OKXHUUCBGR6lDnioSIiFQeFQkREUlJRUJERFJSkRARkZRUJEREJCUVCRERSalKQ4dqCzPr4O5rsljuZOBvyZfAmtmu7v5p7HUfoLG7v5a8jZ1R3tCh2kLhSCI1V40bSZTRZ+lAM1sYPd6JHu+b2Rux6fGsiLFmNjr2+vEU77Mw+rcBISAp034lkunKukfidDObbWaJLrYTgU5lbOMuM/tXbL+TH40z7YeISC5V+0jCzDqyPcUOYO+krqsnJNpimNnYaFpXoMjdH49t5yBC1kSm99uDEFna0czGE5oLdk56zysSqXhKphOR+qzaiwShq+vr7j421QJm9mvge0CH2Dqnm1kh8GgUN/o68GdCk750d11vIeRMzyWEEF0LvApcnNQkMKHGJNNlFTqkQCERqUQ1oUhA6eyHsvQmfBEfC7xLSKt7FXibqIGeu39pZjcTus4OiOJTAfaJjRJOcPcPoxCjzsAnwB+BccBTZvYVsMjdT4+9d41JphMRybWaUCQaEH7dZ7PccYTDNT0JX8Jnxxdw9xlm9jtCJ9ZzIJyTcPcjk7bVnDCaOIMQcXoeIdjoPnd/KWlZJdOJSL1VE4rErsBnWSw3BXjC3VeZ2YvADcDziZlm1jea1oCQTZFOO8JhqQ5AM0JY0H7AWWb2OnCBu78YLVtjkumadO7jGUOHFCgkUm0qO/CnJqgJVzcNJuRNZFLo7lcCuPsCdz+I8OWasAH4KeHwTiZ7A28Aee5+FeF8x6uE4nJYrEBANJKIP4BS38SxZLr5Wbx3PJlulbs/CHxtZt2yWFdEJKeqdSQRpbqNJcSIZvInM0s+Id2EaNSQiP5MhBqZ2TOEw0q7RiOBxe5+bnSZaldgDZBnZg0Jo4proumXAZfG3kPJdCJSb1X34aY9gAvd/Ysslh2dfPWRme3JjslvALj7YSm2cxphtLEI+Bswi3DyeLaZ5QF/N7Oz3H1GtLyS6USk3qpzyXSZWPTzPXFTnJm1c/d1sfmNgFaJaUqmE5G6Ll0yXXWPJHIu+cs9XiCi11uAdbHXSqYTkXqrJpy4FhGRGkpFQkREUlKREBGRlFQkREQkJRUJERFJSUWikplZs+reBxGRylLvLoHdWWY2392HpZjXk9CT6aQM2ziSEErUEHgT+NTdl2V677qaTJcLSr8TqRgViQyyCEW6idBFFkKTwDfLaAiYaFHeKlr+Q+CtaF5HYLKZzYpyMUREagwVicwyhiIB95rZAOAPwKlAC3d/J75A1PJjZvR4k9DDaQnwLWAMMNHMDnD3f1X+RxARqRgViexkc4f1FOAi4ECgPyGEKK4VMBnoTsic6A5sJbQ37wOMc/eN6d4gq2S6yqakO5F6TUUis4yhSGbWmtDx9WagDdDczI6PZj/g7jdE8w8iFIvdgSuj+R0IxWU0sLKMbSt0SESqjYpEZhlDkdz9czM7gpATMQ/Yn5CBPdndv4qWWQ1cZ2bDgNOBFrFN9Eiz7ZLQofzd89QzSkRySkUis4yhSGbWGbifMJIAKCa0Ip9nZqcmsi5i3gMWxF63zWZHlnovMibTVTYl3Uk1qYspb7WRikQa2YQiRZkRDwHnuftcMxsFED3/CHjAzIa4e3FstV6EE+IJnSt950VEKoGKRHoZQ5HcfZmZ5bv7F2Z2ICEv+9Jo3r/MbHhSgQCY7u6FiRdmNoPsTo6LiORUvQsdqm7RpbB57v5NeddV6JCIVAWFDtUgUYjRDkFGIiI1kXo3iYhISioSIiKSkoqEiIikpCIhIiIpqUiIiEhKKhIiIpKSLoEtBzMbCzR09+mxaQeyvR1Hh+jfxsAGINFC9QJ3fzG2Tp0OHVLAj0jdoSKxk9z9FUJ/p0QRAegKFLn74/FlFTokIrWNikQGUXfXhcmtOaL24Ae5+5Nm9mvge5QeSZxuZoXAo+5+jUKHRKQ2UpHI7DTgP0By/6YO0bwngd6ERoDHAu8SGvi9CrwNXBItXztDh+IUQCRS7+jEdeVpABwHvERo1teYKCwokggd2ovtoUP3EIpNIbBbDvdVRCQrGklUninAE+6+ysxeJIwQnk/MrGjokJLpRKQ6qUhUnkJ3fwnA3RcAB5nZnmw/3BSXdehQPJmuSec+nvPQoTgFEEk9VN/Dj1QksvOwmW1OvDCzcUAT4N+xZf5kZpuS1mtCSKhLptAhEakVVCSy8313fzs+wcx6EM4lJIx29+VJy6QaSSh0SERqBYUOZWBmTYBvvJL+UAodEpGaRqFDO8HdN2deqlzbU+iQiNQaugRWRERSUpEQEZGUVCRERCQlFQkREUlJRUJERFJSkRARkZRUJCqZmTWr7n0QEaksuk+iHMpKpkua3xO4Hjgpw3bqdDKdpKfkPqlNNJLYSWZ2gpktNLOFwDKgZ+J17NE5WrZV1IJjKJBo6doRuDUKLhIRqVE0ksggi2S6hwkNAAcAfwBOBVq4+ztJyyuZTkRqHRWJzLJJpoOQJ3ERcCDQH7g2afnan0yXS0rBE6kRVCQqQTSqaA7cDLQBmpvZ8dHsB9z9BrYn07ViezIdhGJzETAaWFnGthU6JCLVRkWiErj759FhqYnAPGB/oBEw2d2/ipapUDJdPHQof/c8tewVkZxSkagE0Ynp+wkjCYBiQtjQPDM71d2TjxFlnUwXt9R7Ua3JdLlUz1Pw6nsamtQcKhLZSZlMZ2b9gYeA89x9rpmNAoiefwQ8YGZD3L04tj0l04lIraAikZ2UyXTuvszM8t39CzM7ELgCuBTA3f9lZsOTCgQomU5Eagkl02WgZDoRqeuUTLcTlEwnIvWZ7rgWEZGUVCRERCQlFQkREUlJRUJERFJSkRARkZRUJKqQmenvKyK1mi6BLYfoTmuSQ4fMrBdwNdAemA1sAvIJWRHHlbEdhQ7VUAoEEilNRSIDM/sXsDlp2rjoaTPgB4QGfNcDvwR+AWwD/gEcYGYrgd+4+91m1gq4CfgQeCvaRkdgspnNcvdrqvjjiIiUiw6HZPamuw8GDiH86h/h7oOjaUvd/XXgLOASQuDQf4CDgaeBvwGvRgUiETr0LPAoMA4YBFxACB3qb2YH5PajiYikp5FEGmbWFugRRZPuQsiB2NvM4ssMAf4KTCMEED1KKAZvAbuxvRDXndAhBQKJ1BsaSaTh7uujEcMRhENOe0Sv/w38PHq+hVAkPgHGEg4/zSK0qEFapQAAGMFJREFUDe8IvBttLhE6tBfbQ4fuIYQOFRIKiohIjaKRxP+3d+dhdtV1nsffHyokIQSQLUMQIYBBWxBBQht5UBY3RFwYaUVAloFGxqVbBSG0zUMUaJEGxUcaAw3NMkwLDuIMAwGVERrZSVrZFLBpFtkji6whLJ/543cKDjf33FpSVbdu+Lyepx5yzvndc3+nqrjf+p3l9xmc44AngdnVlOHTbd8IYPsGSe8A3g8cBkwGPgp8jHJ66oaq3bBCh5JMFxHdlCIxOF8DPgDMo/zFf6Gkmbb/UGtzJbAI+Avgj8DvgC9RTlP9j5b9DTp0qJ5MN2n6TI+L0KE3eCBQDE6Ck5YPKRIdSFqZ6qIy5cL12cA/AlsDP5D0H7b/pmr+eeBh4HHKnU7XA18BviLpL2z/vrbrhA5FRE9IkejA9rOSngJ+DHy1muYbyihgZ0kb15pfTikO8yjXGX5h+zxJjwA7AvUikdChiOgJCR0aAZImALRJoGvXNqFDETGuJHRolA2mONTaJnQoInpGboGNiIhGKRIREdEoRSIiIhqlSERERKMUiYiIaJQiERERjVIkIiKi0bh5TkLS2sBmti/vxnvbXjSIdrsBP3XLE4iSVrf9RG15JjDR9m0j2c/lMZkuSXAR49u4KRLAS8DukmbXE9qqIJ4f1tqtQZlBtR6s8FXbCySdDLy7Yf+XtkyFcZ3t2VUO9UWUabwbSfoIsLft89ts3rOKJN3d9jPAt4HTgNta9nEOsCktSXc17x/Ok9gREaOl60Wimtvoj7VVW0n6dPXv9YEdbW8raRFl6u0/V19Qwno2sv1stfwOYNvWJ6AlzaDkNyDpLZRpvKdJOgh4DpheBQv1O9L2z6v29wP3A6sAS6p204Bdbd8EYPskSQ8C20p6gFLEFkq6DNinmia83+eAbwJft71I0ibAHvUCFhExXnS9SAA32t6l3QZJx/H6KSzub2myMbBUyIKkCykf5FACgurZ0S9S/pq/hFJsjgV+Cxxq+/Y23bi/Cheq7/9MYMXq31tTwoYOBTYETqLMFvteykSA8yW9x/bi6uWLgROBCyTtU7U/uN3xtxo3yXQjae5q3e7B8CSdL94gul4kmgpEte3Q2uJEYL2WJpMbXrpG/we7pHpuA7YflrSQMj33o8A/UfKmfynpWWCh7T1rL9m0ZZQBpTidVO3vxmo22GOBm4GrgbWq/t5JmUF2R2B+rQ8LJe1XrZtvu/HEfEKHIqKbulokqg/X82qrpgBrAnfX1h1l+2JKZvSzLdsmAK8M462nUEYTewP/DPwtsBNwnu1rWtre1jCSeJXtcyXdDLyVkl9dd6nt+SxtdeApYBtJq9h+ul1H66FDs9bty5S9ETGmulokbN8FvDo9raRZwAG2D6q3kzQJuJES7LNybdOjtp9rs+vHa3/939Rm+5rA6ZTch5WAI4F3AvtJ+h1wsO2rq7YdRxI1h1EyJe63vVvV7y2AQ1rfXNKOlOyJTwCzgVOAPdr083Vu8UaMi2S66Ml0viTFxXB0/XTTQCRNAy6k3OF0N+VD9SzgIOCMdq+x/YmWfcxoafI2ygiiz/Yxkk4DLgCWAB9rKTwDjiSq4rYhpdg0nj6rbEi5+2kX2w8C50vaSdL6tpezCw4R0evGfZGgXJg+EXgzsDnlgvT+lBHA5pImA9favqdqf5201Ln7iZTrBUiaSrm2sQjoqwKDTqdc3F4P+Hvg72qv3UxSa9LPDKqRhKQ1KEVr32rbDrWRx5T+9635HqUYXdDSz59I6j+1FhExLoybIiHpG5QP2tNaNk2iXGT+PfA/bT9ctZ8IvItybaH/ltfd+7e37Fu8lim9B+Vi8kLgp5RRynzbF1Wpcf9X0n62+0cptw4wktgEOLm6gD0DuLx2umkzYE5Ld3atFbQheeebV2NBThlExBh6w8WXVgWD/qemJa1p+7Ha9hWBVfvXSeqrZVu/uo/Wp67HQuJLI2I0JL60pvXDvV4gquUXgcdqy0tFjXajQEREdEMm+IuIiEYpEhER0ShFIiIiGqVIREREoxSJiIho9Ia7u2moqhll160WV6VMGV6f+vsDwCcp04M/R3kSfDrlgbnHgHNtLzWXhqS9gMm2W58LabQ8hg6NRwlCinhNisQA6lN8SPo48Je2j6it2xi4nfJQ3wRgHmWywCeAR4CdJV1PCRo6ubbrtcrLdUBt3aG2rxytY4mIGKoUiaFZhaVT5Z6l5EccQXn6ekL1tSLlKe8+YILtaynzTgHDG0lERIy1N9wT10Ml6WDgr6rFdSgZFvdUy3fa3ruafmNrSlHYj9dONy0G/p/tr1b7mkYJOLqPMpJYgZJpsQ5luo7fdOrLrHX7vODAqSN3cDF2ElIU41ieuF4Gtk8ATgCQdDklKe8w2wtrbW6tsrgfoMw99WHK6aYbKSONfisAN9j+VDWSmGp7nqTjKSOOiIhxJXc3DZKk7SghQcfSkhEh6U3AZygF4UngecpF7Cd5LY97uO97oKQFkhYsei6jvogYWxlJDEKVF/F9StbEQ9UH98HVKANKGNIjVCMOXjvd9N7q9Zu0u8Op2rYCZRTRtgLUk+kmTZ/phA51RwJ74o0qRaIDSasD3wS2A/6r7YeqTZ8HzpZ0LnAw8N+A9/dHkEo6hJJQd27LLhcDrfGoh1NCkG4fnaOIiBi+FInOnqPkTsyx3Z9Zge0XgM9K2pkSQPR3TRnVdbafBI5rWXfMiPY4ImIE5e6mHpI8iYgYDZ3ubsqF64iIaJQiERERjVIkIiKiUYpEREQ0SpGIiIhGKRIREdEoRSIiIhqlSERERKM8cd2BpFOArRo2/4ft3at2/wJ8y/a9kq6yva2kGcBc2/u27HMnytTgE4A7gCds3zqY/iSZbvCSLhcxMlIkOnsbJWXuy8ACSgYEts+UVP9gnwio044krQr8AHgI+EO1ehpwnKQLbX9nhPseEbHMcrppcPqAF4f7Ykl9wLnA5cD/AQ6gjFAOBvYCNqvyKCIixpWMJAZnHeBhyhTgSOo4amhjVcrEfhsA+1f/fZkytfhM4ADbzw+0k01fWMKCu+8b4lsPIIlpEdFBRhIDmwS8C7iFkvkwCZjf0magVLkpwHsoGdjrAkcD/wqsDcwF/kvTCxM6FBHdlJHEwOYB37P9iqQbgDOA/005TdRvZUpWRFu2HwC+K2l7YE+gHlQ9o9Ob10OHZq3blyoREWMqRWJgc2zfBmD798BsgCqjGkmTgHcAiwa5v/uAq2rLawy2I7d4I0Y8mW7OxSO7v4guSXrg6EiRGNhZkl5qt0HSROBfgF/ZfrlaffkA+9uIcjdUv+nL3sWIiNGRIjGwnWz/qXVldQvsppQP/Z3619s+YoD9nWZ7bm0/Z9CQbx0R0W1JputA0kTbSwZo01cbRQy0vz6gb6B9NkkyXUSMhk7JdBlJdDCYD/PBFoha20G3j4jottwCGxERjVIkIiKiUYpEREQ0SpGIiIhGKRIREdEoRSIiIhqlSIwCSfMkbduw7SBJf1VbPkDSvmPWuYiIIchzEiNA0keBo2qr1ge2l/RM/4ragyoTGHjW2LbGezJd0uAilj8pEiPA9iXAJf3LkuYB59i+qrZuPeB8SgF5VtIOlCnI/xJ4WdJBwBdt//uYdj4iooNMyzFCJO0N7FwtzgLuAfrnfDq6P8da0mWUuZr2oBTp+yjRp6vZfrbTe8xat88LDpzaqcnyLyFJESMu03KMjZ8Bv2jY9jiApM0pU43/kDJ77EXAryjJdR+kRJtGRIwbKRIjx8CdwO9a1k+xvbmkCcD3gVOAmyinp74F/JQSWrQ/bYqEpAOBAwHWX22oqakREcsmp5tGiKSpwEW2t29Zv8D2LEm7URLpplJOQ20PXAy8mZJqtwFws+2fNb3HpOkzPX2fEQ4dihjnEiY0+nK6aexsJal1Lu+JALbPB5D05Wr9P9q+q7pgDfAdyogiImLcSJEYWQvbjSTaNbR9V8vyEmBYORMREaMlp5tGkKSVbD8/WvtP6FBEjIZOp5vyxPUIGs0CERHRDSkSERHRKEUiIiIapUhERESjFImIiGiUIhEREY1SJCIiolGKRERENMoT14Mk6XTgH4D3ARNsn1atX4ky/1K/zwEvABfU1j1o+7mW/e0FTO7fz2CM99ChThJIFNGbUiQGr4+S+9BqOnBAy7qVW9adKWkKcHJt3VqAJNXbHWr7ypHobETESEiRGCZJ6wCHA1+zPUfSacBmLc3usr1nbXl27fVDHklERIy1FIkOJE0D5leLM4Cjq3//NSVZ7kjbr1Tr3mp7dsvrr2pZngb8lpJGtxawQjWSWAfY1fZvOvVn0xeWsODu+4Z/QN00d7Vu9+CNK2l+sQxSJDqw/SglihRJZ9Y2/cT2CS3NJ0q6rmXd5JblFYAbbH+qGklMtT1P0vGU01lLSehQRHRTisTw/BlA0puAp6rRxPuAj1O+p+sB9wJ/WNY3sn0qcCqUjOtl3V9ExFCkSHRQFYEtgc2Brds0+QJwt6SLgR9RYknvrba9APxY0sm2f9ThPVagjCIGLAC3eCNmLE4yXS9ImlosL/KcRGfvAj4M3AXcXq27BTikChPaj1IUbqKcRnr1FJTt+cA2wKclfahavRi4puU9DgfeVtt/RMS4kZFEB7b/Dfg3gCqjGtsLgbf3t6mek9jO9gOSvgR8A9i/avu0pE8CL1XLTwLHtbzHMWNwKBERw5Jkuh6SZLqIGA1JpouIiGFJkYiIiEYpEhER0ShFIiIiGqVIREREoxSJiIholCIRERGNUiSGQNJukpaaZU/S6i3LMyVtOnY9i4gYHT35xLWkLYDdbP99bd27KaE+K1Km9e6fXG994BHKXEpLhfoMNtdB0keAvW2f32bznpJ2Ana3/QzwbeA04LaWfZwDbFr1pZ33217S1IdeTqbrtiTjRQxPzxQJSXOBnarFKcAakj5YLV9r+2uSbqXMt7Qa1VQYwBrAIuCJ4aS+SbofuB9YBVhSTQc+jZL/cBOA7ZMkPQhsK+kBYCqwUNJlwD62H6jt8nPAN4Gv214kaRNgD9tzh9q3iIjR1jNFAngr5S/1eyTtAmxu+x8AJF1atVmHkkP92drr7gd+DbynarsBcF5te7sY0V1tP9T/+jZhQmdSRixI2hrYFzgU2BA4CTgbeC9wFTBf0ntsL65evhg4EbhA0j5V+4OH/N2IiBgDvVQk6jakzJz6OrZ3kfR2oPWU0L22/6lqcy9DixHdtE2Y0MaUD3ds3yhpY+BY4GbgakrhmQjcCfwY2JHXEu6wvVDSftW6+bYHdS5k3CXTJfEsYrnXc0VCUh/waeBBSUfYPqq27SrKMa0EvJNyXWJd4DZJE4BPV0UCSf8LeAuvH0m8ZHvblre8rWEk8Srb50q6mTLa2b/l9ZdW04a3Wh14CthG0iq2n2443iTTRUTX9FqRmEI5lfMTSlrbpZIuqm2/FNiKcteWgMuAtYE/Aiv1F4jK2m0+/K9o854dRxI1hwGXU05P7VbtbwvgkNYdStoROB74BGVUcwolM3sp9WS6SdNnelyFDs25uNs9iOVAAprGt167BXY34HLbJ9t+Cfgi5SI11UhhRcpF6imUArEv5S6jXSkXi4fjNtuz61/A6z4dJc2inAK7YhD725By99Mutu+v7pZ6TtL6w+xfRMSo6bWRxNm27+lfsH0ncKekOcBkyq2lTwDTgReBX1AuFB8O/ErSF/rvSALWbjNC2KTNe25WpdDVzaAaSUhaAziLUpAAdqjtdwrlOkXd94AllAvX9fU/kXSU7fx5HhHjRq8VideRtCrwK+B6YOVq9aWUD+0jKaeFbrd9vaQ7eO22WIBFtrdv2d8Vbd7m1gGuSWwCnFxdwJ5BGen0n27aDJjTsr9d64VuKN755tVYkKF5RIyhnkmmq55qfsr2y4NsvwrwfHVaalnet6/1PSXJXfjGJZkuIkZDp2S6nhlJ2H5iiO3b3i00jPddqih1o0BERHRDr124joiIMZQiERERjVIkIiKiUYpEREQ0SpGIiIhGKRIREdGoZ26B7RZJ7wV+2LD5VOACysR+/T4CTAIurK27y/ai2j53okxrPgG4g5J1cetAfRnL0KGE9EQEpEgMyPa1QNuHTACq0KD69o0o39f6uieBRdUT4j8AHuK15LxpwHGSLrT9nZHse0TEskqRWEa275T03ykhQ1CS8FagTAkCcEOVXNcHnFt93UGZw+lmSpLeXsC3JW1p+zdjegARER2kSHQgaSvKNN5QQoSmAo+3NJsLzAR2AX5E+cD/E3A6sA+vBSCtChwHbEDJnNgAeBk4oXr9Abaf79SfMQ0dmrvaCOwjoUQRvS5FogPbC6lOG1UzzT5u+1RJK9t+tr+dpIMoH/r3UwrBRMpstPX0vCmUCNVVKUFIR1fr1wa+AewO3NPah4QORUQ3pUgMgqQplDS891Wrjpd0re2za81eARZSLlpPpGRLvDq5oO0HgO9K2h7YkzIq6Tej6b3roUOz1u3LnFERMaZSJAZnDnAiMEHSW4B5wFmSHrfdn4z3YUq40VqUVLzNgIva7Qy4D7iqtrzGYDpxizdiXCXTDSTJdbGceSOm6KVIdCBpBUpexTTKdYbPUJLvFlFiVI+QdGXV/BTb35W0FzDZ9mnVdOWtmdlQ7oCaWFuePlrHEBGxLFIkOrD9CrB903ZJVwNtTwFJ+gAlve6XbTafZnture0ZTfuJiOimngkdWl5Ut8L22V4y1NcmdCgiRsNyETq0vKhCjAaVrhcR0W2ZuykiIhqlSERERKMUiYiIaJQiERERjVIkIiKiUYpEREQ0SpEYYZK2lbRit/sRETES8pzEEEi6wvb2bdafQpnc7yxKXsSpkl6pNbnQ9s0tr3l1+o7Bvv9YJtP1miTpRYyOFIkRYPsLko4GvkWZ/O+qliaPSno3cHJt3VqAJB1QW3eo7SuJiBgnUiSWkaTtgL8GzgGOB9YEPkmZxO8PlNHCFsDDwOza64Y8koiIGGuZu2kIJC2glhEBHGX7YkmfoUz3/TSwHvAz4G+BQ4BLbW9XvX4a8FvKVOFrUa4JPQqsA+w6UHTprHX7vODAqZ2aRK9Ial+MI5m7aeQ80+6aBHAJZfRwDKWI7E1JoJsNbCzpq7ZPpBSFG2x/qhpJTLU9T9LxQF+7N0wyXUR0U4rEyNgB2BCYTznltAtltPBHYL+qQAxLPZlu0vSZ7qnQoQDemEE1sfxIkRgZO1OuSRwD/Jhyyulxyvd3FUkn2b693QurYKM+kicREeNQikQHktagjA76rS/pupZmXwK2qf57u+0v1F5/KPCftQKxGLim5fWHA28D2haRiIhuyoXrZSRpTeDdtn/Zsv5yynWJHW0vdZWyfk1isO+V0KGIGA25cD2KbD9Gm4hS2zsM8LpzRq1TEREjJNNyREREoxSJiIholCIRERGNcuG6h0h6Grij2/0YI2sBf+p2J8ZIjnX51EvHuoHttdttyIXr3nJH0x0IyxtJC3Ksy58ca+/J6aaIiGiUIhEREY1SJHrLqd3uwBjKsS6fcqw9JheuIyKiUUYSERHRKEVinJI0R9LV1dfslm1bSvp19fWtbvVxpAxwrJ+VdL2kayTNq2bN7VmdjrXW5jhJx45130baAD/XLSRdUf1sz5c0uVv9HAkDHOuukhZIWijp4G71cdhs52ucfQHvAK4EBGwALGjZfh2wSfXvnwNbdrvPo3GswGTgbmDlavk84OPd7vNo/VyrNlsCjwDHdru/o3mswA2Ue/MBvgi8vdt9HsVjvZcSazwR+E9gWrf7PJSvnv6rbDn2PuDnLu4FJkhaFUDSJGAN23dWbS+p2veqxmMFlgDb2H62Whavj4/tNZ2OFUl9wHGU4Kpe1+l3eAbwHHCYpCuBVdyQt9IjOv5cKb+zUyh/9DxEiTnuGSkS49OawJO15Weqdf3b/tywrRc1HqvtV2w/BCDpb4A3AZeOeQ9HTqefK8DBwL8Ci8ayU6Ok07FOp0T7zgN2BHaQ9MGx7d6IGujnegIl2/424AHKHzs9I0VifHoCWKW2/CbgsUFs60Udj0fFscCHgF1djd97VOOxStoY2N72Gd3o2Cjo9HNdDNxl+2bbLwEXU06z9apOP9f1gS8DGwMzgBeBfce2e8smRWJ8+jXwYQBJGwIv2n4KwPbzwJ8lbSRJwEeBq7rW02XXeKyVUyjhTZ+snXbqVZ2O9WPANElXAHOAPSR9viu9HBmdjvX3wJqSNqqWtwNuHvsujphOxzqZUhSfsf0y8DDwVNu9jFN5TmKcknQE5RevD/g6MBOYaPt0SVsD36cMWy+zfWT3errsmo4V+HdgIeV/wv5f1B/Y/lk3+jkSOv1ca232pVzIndOVTo6QAX6HPwQcBbwCXGP7kO71dNkNcKxfBz4LvADcCnylKhg9IUUiIiIa5XRTREQ0SpGIiIhGKRIREdEoRSIiIhqlSERERKMUiYiIaJQiERERjVIkIiKi0f8Hu3wBjkEZpXsAAAAASUVORK5CYII=\n",
                        "text/plain": [
                            "<Figure size 360x720 with 1 Axes>"
                        ]
                    },
                    "metadata": {
                        "needs_background": "light"
                    },
                    "output_type": "display_data"
                }
            ],
            "source": [
                "pd.crosstab(df.region, df.\u535a\u7269\u9986\u6027\u8d28, normalize='index').plot(kind='barh', figsize=(5,10))"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "...but it looks much better stacked! We can do this because **each row adds up to 100%.**"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 14,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/plain": [
                            "<matplotlib.axes._subplots.AxesSubplot at 0x11476de80>"
                        ]
                    },
                    "execution_count": 14,
                    "metadata": {},
                    "output_type": "execute_result"
                },
                {
                    "data": {
                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAI+CAYAAABJ+vbtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdebyWc/7H8den0qaSVKRoU7ZkqUaRJmSyZGdEDfkJMWPMIFlHE5HGEpoZSya7xjqalCUjhFAxiTLZO6lQKlHp1Of3x/e66zq3cy/ndJ/lPuf9fDzO49z3dV33977u88f9Od9r+bzN3RERESlOjYreARERqbxUJEREJCUVCRERSUlFQkREUlKREBGRlFQkREQkpVoVvQOSvaZNm3qbNm0qejdEpIqZNWvWt+7erLh1KhJ5pE2bNsycObOid0NEqhgz+yLVOh1uEhGRlFQkREQkJRUJERFJqdqekzCzQcCfgG+AbYGtoseNgdvdfWxs232AwcAfgVHAGHdfGFt/JNAVuNazaIZlZocDOxD+/h8B37n73Eyve3/RStpc9my2H1GkVD6ve1pF70LO7NV254rehXL3/hnv53S8alskIi8Q/gbPEb606wPtU23s7uvNbCxwOjAytnyymXUB7jWzPYDawM7Ax8A6d/8lgJk1Am4DFgMLopc3B0ab2UR3vyHHn09EZItU9yLxP6AV0BFoQCgUbwB1zewY4Ipou62BpmY2gPCfP2Z2NHA8sBLo6e7XJgY1s1bATe7eP7asJjAh+vkIuAWYA+wNDARGmNm+7v5u2X1cEZGSqc5F4hOgT/S4K1CXUDR6A/e7+4vARAAz+xXQC+jt7j3N7ATgU3dfbGYNgSPN7DB3H5rm/RoBo4HWwFnR7w3AzUAHYLC7r8nxZxQR2SLVuUgsB3aJHjchnJPYGD0vTNp2T2A+0NvMDgT+jzCLwN2/B/5gZp3NbCt3X5/i/eoD+xOKxY7AddHyZsBQoD/wefKLzOwc4ByAmo2KvddFRKTMVNsi4e4fAN0BzOwkYIf4yeoEM9sKGAAcClxKOAQ1oJhi0AvYFXg8xfstAm40s97ReA1iq9uk2c+7gbsB6rTooIQoESlX1bZImNl0oB6wPrZsIFCTMKM4jjDbGAfcCYwgzAC6ufu6qLC86e6LzKwOcApwSJZv/yUwPfa8yRZ+HBGRMlFtiwQwBLgKeI1QFL4mnET+gHBeojXhJPN9wJnATcD2wKtm5kBD4BdmZsBY4FbgNjPbL/EGZjYjenijuz8de+92hCugElrk+LOJiOREtSwSZrY14Yv9N+6+0MxuBe4CugBPAXsRvsRPcPdlwPjopROLGasu8IK7PxW9Nhvj3H14bIzxQMZDSXu13IaZo47K8i1ESmtlRe9AzuT2joHqybK496tKMjPL5sa3MnjfmkBNd/+ppK/t2rWrq8GfiOSamc1y967FrauWMwmAiigQ0ftuIFz6KiJS6al3k4iIpKQiISIiKalIiIhISioSIiKSkoqEiIikpCKRQ2bWM2rjISJSJVTbS2CzYWaXA8dGT5sQbrBbEj2f7e7nm9ldwCzgfsId2neb2cbYMBPdfU5szFIFDoFCh6RyypeQouoSQJTr0CHNJNKIQoAWplj9h2ibcwkBQ38m9Hh6ldCXKfHzNYTAoejO6l6ARWM0B+6JipGISKWjmUQaZvZ/wPPR0y6EmNOp0fPTzWwBcDbwEKG303aEmUc7QvJcXXffR4FDIpKvVCTS24HNs61F0c8OsfWPE/o5tQFuIKTcPQ1cCFxCiEUFBQ6JSJ5SkUjD3a83s/nAiqRV7d29GYCZTSHMHkYSwopOJxSF7kB7M/sDoZiUOHBIRKSiqUhktgFIPrG8Y+zxwUBbYDLhkFM/Ql7EQuBMdx8TbVfiwCFQMp2IVCwVicxqAp2SltWLPT6ScE5iJPAo4ZDTcsLftqGZjXX3+bHtSxQ4pGQ6EalIKhKZrXb37vEFZjYt+t0WOAD4LTA/utIpsc2lwKdJBQIUOCQieURFogSisKIpbL6EdRVwcdT+O14gXiacfyguzrRUgUMiIhWh2oYOVYQtCRwChQ6JSNlQ6FAlocAhEck3uuNaRERSUpEQEZGUVCRERCQlFQkREUlJRUJERFJSkRARkZRUJEREJCXdJ5GGma0i5D80cPfdo2XT3L13bJtuwB3R00QHvtrAamBl9Pxid3899ppSpdMpmU4qUmVOoKsuqXPZyHUynYpEerOBu4DdzWxGtGyP2ONT3P0dQltwzGxQtLwVMNPdn4sPZmaNgNuAxYRQIgjpdKPNbGKUhCciUmmoSGR2KaEHU1NCsNADhDS5S9z9CyiShR2fSQwws+HAM+5+g9LpRCQfqUhk9jQhI+KvwEmEYKHfAveaWQ133wi0BwYBRwNfEDq9vgd8DFwWjaN0OhHJOyoSmY0C/gu8QggIakuYVTQBrifkQ0C4COAY4NRom9pEYUGR+pQinU6hQyJSkVQk0tsKeA2Y4u4XmdlNwD3AIHcfkrTtGOB5dy8ws9cJM4RXEyvdfRGlSKdT6JCIVCQVifTWu/uBAGa2M9AHuBw43cxauXtBbNvh7v4GgLtPB/Y3s13YfLgprkTpdCIiFUVFIgtmtgfwGPB7d19vZncSZgqnxDb7m5mtTXppHWBWMUMqnU5E8oKKRAZmZsDtwKXu/h8Ad59iZv3NrLe7T4s27Z8cVZpmJlGqdLq9Wm7DzFFHle6DiGyxlZk3qSC5vTNA4pRMV862JJ1OyXQiUhaUTFeJKJ1ORPKJejeJiEhKKhIiIpKSioSIiKSkIiEiIimpSIiISEq6uilL0f0S9YHtCM35OgEfuPurSdu1BhaX5hJXEZHKRkUiAzMbAJxH6P7aADBCZ9gPgP8V85I9gb+b2VGe5iYUMxsI1HX3cdnui0KHpDxU5nChslRVgosUOlT+ziL8nWoRZhKNCK3D+wGY2W8ImRBXA4lW342BN8PkAwg9nzoCf4uN2zS83AbHll2aPDMREalIKhIZuPshZnYp4fxNO2AX4IVo9aPu/oWZHQjc6u73AZjZP939lKShZhMl2EXblHgmISJS3lQksnM6If+hPmEG8DkhgGgmIWQIYD8zS7QPj0ecApzj7nPMrDkhjOjLaJwa0UxiB+B4pdKJSGWjIpGdFsDvgG2in+bAzsCd0fo6wNvu/nszqwc8C2x09z5J49SItjsumkk0cPc7o5yKmuXxQURESkKXwGZnDjAD+BBYFD2eDayO1jcDvosenwI8D7xtZkdv6Rub2TlmNtPMZm74sfJ24RSRqkkziQzMbD+gHtCTcNK6UfQYNudAHAA8aGYdgQuAXoTZxeSou+JXacavQZhFFHsllJLpRKQiqUhk4O6bTjhH0aN93P2qxHoz6064LLY38HtgoLv/APxgZr8FnjCz0939Y2At8EbSW1wO7ArMR0SkklGRSCMqAGNiixoBjcwsfq5hHDAYaA/0igoEAO4+y8zOIhQH3H0FMDr+Hu4+sox2X0Rkiyl0KI8odEhEykK60CGduBYRkZRUJEREJCUVCRERSUlFQkREUlKREBGRlFQkREQkJRUJERFJSUUig6hhX7bbNjOzg8tyf0REypPuuE4jiiz9p5k9AHQDDkzaZKS7T4k9LwT6m1l3d78hzbiHE9qD1wI+Ar5z97mZ9kfJdJKPKjrprqokzmVLyXTlyN3dzE4DJgKHJ3KrzWxn4F/A29HzpcDC2Eu7mNmJ0eOdgUPcfa6ZNQJuAxYDC6L1zYHRZjYxXWEREakIKhIZuPtqMzs0Ka/6QWCIuy+Lnr/j7v2Ke72ZjQY2mFlNYEL08xFwC6EF+d7AQGCEme2r4CERqUx0TiINMzvBzN4Cbo8tqwV87+5vJ5alKhDRukvdfR6hOeBoQsfYs4DWwJ7AzUAHYLAKhIhUNppJpOHuT5nZbGB4qm3MrD3wz9ii+sB2wGexZdcSYkv3JxSLHQlxqBACi4YC/QmxqMnjnwOcA1CzUbPSfRARkVJSkdhC7v4JsKl7opl1JcwKhhSz+Y1RJsUAoEFseZs04yt0SEQqjIpEZrsCv4gOM9UGXiDEl26JL4HpsedNtnA8EZEyoSKRRnSPxNXAMEL40B/dvWf6V2WlHaHgJLRItaGISEVSkUjvV8Cd7v5vM2sCzDazH2LrDbjS3acCmNlQYBAhrS6dce4+fNMgZuNJkXEdt1fLbZg56qiSfQKRCreyQt89t3cNVD9Kpitn0aWwNRP3XJSEkulEpCykS6bTTKKcufsGYENF74eISDZ0n4SIiKSkIiEiIimpSIiISEoqEiIikpKKhIiIpKQiISIiKekS2Ayidhy9o6dnAa8B/wNWxTvBmllP4JfuPtLMpgF9gFbAcHcflDSmQodEKkiuQ5AqW6hRrkOHNJPIrAEhKKgToWNrh+jxbUnb1QLSRp2aWaPo7upehLu1IYQO3WNml+dyp0VEckEzicwKge8Jrbx3IswAVgPzEhuY2W+BrYDjzeyjaPFEQs+nxDYKHRKRvKOZRBpmdijhS/3b6Oe/hMyHb4FmZjbJzJoDJxDiSJ8HEnPZfxL6OCUodEhE8o6KRBru/lKUOncg0JTQ0rtp9JNIpGtHaB2+BlgBJBoATgF2jw1XnxA61JHNoUOPEA5hDQe2L9tPIyJScioS2fnA3bsDjwOXRI8BcPcZ7n4l0JYww/h1tPxr4PzYdovc/UbgRcI5jf6xnzap3tjMzjGzmWY2c8OPFdtNU0SqHxWJktkf+CZ5YXS+4RzgNXffmMU4idChxM/XqTZ097vdvau7d61Zf5vS7bWISCnpxHV2XjKzewmXvh5vZgcBL8GmAnEnsMzdE9eeLcownkKHRCQvaCaRhpn1MLP/EM5F3O3uV7n7KOBEYHszOxOoSzjxfFbide4+IMPQ49y9e+IHmEQWoUMiIuVNoUM5YGbmWf4hFTokIpWNQofKWLYFItpWoUMikjd0uElERFJSkRARkZRUJEREJCUVCRERSUlFQkREUlKREBGRlFQkSsDMTjIzK2b5tknPO5jZnuW3ZyIiZaNK3SdhZt2AO6KnzaLftQn5D4nueMOAbYGWwHHAX6Pl1wFXRY9fcPcfk8buC5zu7k8U89YDorS5/u6+GhgBjAM+SBrjIUJ78HUpPkKvdDfZKZlOpHgNd7+soneh0sh1Ml2VKhLu/g7QHcDMBkWLWwEz3f25aHlrQgGpR2ip0TTargZwMqHZ3suJMc2sACgAGgI/mdkMQprc8e7+3+h9x5rZV0BPM1tESLObZWZTgTPcPd7L6VTgSuAid//GzDoCp7n78Fz+LUREcqFKFQmAKAb0WIrOJAaY2XDgGXe/wcweBp4DPiG07QaYT/h7FAKN2TzzKIi3Bo/e4z5CEl1i9jIIuJTQLnws8ADQg9DhdbKZ7e/ua6OXrwXGAE+Z2RnR9hfn6OOLiORUlSsSQHvCl/bRwBeEjqvvAR8DiTnp7oQY0qmEmceOwJOE1LlfufsXsfH2jGYPye8xFsLsxczaA6MIcaSvE2YntQldYx8FDgEmJ17s7rOi5oCTgcmx7rEiIpVKVSwSEA4dHUM4tNOW8IV9DoCZtSJ0bD052naXaP02QDdCYYn7IMVMYhN3n2Bmc6KxzqKo59x9Mj+3LbAKOMDMGrr798V9EDM7J7HvNRs1K24TEZEyU1WvbhoDPO/uBYT/7K8kZEtDyG64nfCFDvAm8AywnDD7eCVprD3NbEb8BziqmPccRmgpXhBrAT4k9j6bmNkhwF2EbOybosfFUuiQiFSkqlokhrv7dQDuPt3d92fzF/FsYB7wNuG8QyGwH+GwkAGzzaxebKwP4tkP0Zd/kUuMzKwrYcYyLYt9a0u4+qmfuxdEV0v9aGY7l/KzioiUmap6uOlvZrY2aVkdYBbwf8CrhMNR4wiZ1F8Tzk+sAYYDj7C5EHQys+QQhzZE5yTMrAlwP+E8CMDBsXMY9QnnKeJuAX4inLiOL3/MzK51d13jKiKVRlUtEv3dfX58gZntQjhx/SawnvAf/auEwtEQuAAYSrjq6fexl87NcE6iI/C36AR2G+Bldz8p2q4Tm0+WJxzv7p9vwWcTESk3SqbLwMxqRkFB8WVZJ9HlkpLpRKQspEumq6rnJHImuUBEy1RZRaRaUJEQEZGUVCRERCQlFQkREUlJRUJERFJSkRARkZRUJEREJKWqejNdTpnZNMKd0lcUs/pp4KXo8SeEm/R2IzQXvBFY5O6fJY13OKELbS3gI+A7d5+baT8UOiRSdj6ve1rGbfZqW/m75+Q6dEgziTTMrFvUYmM/4BeEVhwbCJkQ6witPKYCJwHjga5Al+hne0Kn2Qtj4zUys/FALzY3HGwO3BPlYIiIVCqaSaSRSLozs98TmgE2JXSYfY3Q8fXSKBviS0IRaUNoFV6XkFFRF2hmZv8gRJlOiH4+IsxM5gB7AwOBEWa2r7u/W36fUEQkPRWJDMysPuHQ0S+BQ4EzgBOj1Ym24n8iNAdsBjxGONy0P6E31AJ3n2Nm2wKjgdaEQtKaMCu5GegADHb3NeXxmUREsqUikdlfgc7AHwgJc42BmoQv+HZmdi/h3EMtwuwgMYNoQQgx+jEapz6hcDSKtrkuWt6M0FiwPyEZT0Sk0lCRSMPMTgS+JHSK3UA43PQ7QjbFuYTiUIPQXvw/hOCifwCtgOOBO6JxtnX3RcCNZtYbGAA0iL1VmzT7oGQ6EakwOnGd3lPufg2w0d1vjpbtBtSLfjeMlr1NSLt7F+gD9ABaRo/7EGYfcV8C02M/X6faASXTiUhF0kwijWK6vW4LDCZcuTSYcF7hF4RZw1TgWEIBaUOYTawGtgKmAPHLYNsRcrUTWuR+70VEtpyKRMl85u59Ek/M7F+EeyPOcvevSjDOOHcfHhtnPKD24yJS6Sh0qJyZWU2gprv/VNLXKnRIRMpCutAhzSTKWRRi9LMgIxGRykgnrkVEJCUVCRERSUlFQkREUlKREBGRlFQkREQkJRUJERFJSUVCRERS0n0SWTCz/kArd78pev47YK27j4ueNwP+HW2+AyGQ6Lvo+TXu/nzSeEqmEylD2aTMlaWKTLDLdTKdikQaZtaF0PF1W6B2VCwgtPd2MxsCXAwcAUyL1nUlBBQtAPYBfmdm30bhRI2A24DF0XoIyXSjzWyiu99QDh9LRCRrKhJpuPssoGu6mUQ0i9gp9rKWwLfAXEIBWAt8F7XjUDKdiOQVFYkt5O7fmNnz/PxwU4/o+TXu/qmS6UQkH6lIZO8CMzsperw9MDK2rjvwG8JhpMGEhLlnCC3D9462KVUynUKHRKQiqUhk746kw01xexNOVF9BOLxUFzgGuJtQQP5V2mQ6d787Goc6LTqoZa+IlCsVidyoAWwHdAQeJ8wIdgW6pNg+kUyX0KQsd05EpLRUJLJ3YdLVTdfG1nUhzCSGEa5uArgVGAKsKmYsJdOJSF7QzXTZuy2RNQ38JbHQzPoAb7v7He6+aXbg7nOAB1KMNc7duyd+gEkomU5EKiEl02XBzAyKzbwuzVhKphORSkXJdFsoF8UhNpaS6UQkb+hwk4iIpKQiISIiKalIiIhISioSIiKSkoqEiIikpCIhIiIp6RLYPKLQIZHc25KAoooMF0pFoUPlLAoW2srd7zCz6e7e08yGA78mtOc4gqJ/x75AHWBibNkn7v5NbMxSJdOJiJQ3HW7KwN3vBHY3s4ZJq34PPE/ozdQ19tOOkBURX7YdgJk1MrPxQC/AonGaA/eY2eVl/FFEREpMM4k0zKwxcBKhB9OLwB5mNgP4kTBbaAv8BLRnc8hQE0LxbR89f9vdxyqZTkTykWYS6a0EVgNHRI345kS/XyVElP4YbdcB6AcsBI4kzB4WAX0I7cMhhA2NJswgEsl0e1I0mU4FQkQqFc0k0oh6Nk0ws05m9gZQ18yWAn8HtqJokW0NFBAKQW1C6/BdY+uVTCcieUdFIgMzq0fIhvjJ3Q8ws+mE5Ll1hEKRsBGYRTgMVRuYBhQmViqZTkTykYpEZr8C3gSOjM5H7Ap8DVxIOFwU3+54oCnhkFInQk5EcZRMJyJ5QUUiDTOrBYwATgV6uXtvM2sJTHH3hYmcichd7n6jmQ0E6rr7uOiKqJ7FDK1kOhHJCyoS6W0L/MfdPzSzM6Nlg4GxZnYt4RzD18W90MwOBcYSropKNs7dh8e2HU8WyXR7tdyGmaOOKtknEJEMVpb6lbm9ba1yUjJdCZlZbWB9aYOIlEwnIpWNkulyqDRf7kmvVzKdiOQN3SchIiIpqUiIiEhKKhIiIpKSioSIiKSkIiEiIimpSIiISEq6BDaDLEKHurn759G29wLXAwcBtdx9XIoxSxU6pGQ6qay2JN2tLFTGxLjykutkOs0kMsgidCiuJpvDhH5GoUMikm9UJNIws8ZmNpjNoUOdoyZ/vYBDCaFD6V6/g5ndZmY1YqFDLwPPENp7dAEuJoQOdTKzfcvu04iIlJyKRHrZhA41N7OZZjaTEDyUcDbwCPCEu29EoUMikod0TiKNLEOHvk70PDGz+2Ivf8zdb449V+iQiOQdFYkMShA6lGxl9PrGwCqFDolIPlKRyCxT6FBjMzsY6Ax0K+b15wKfAY/Flil0SETygopEGlmGDm1DKCSvA/Ojl74PPBxdPtsAODBpaIUOiUheUJFIL5vQobPd/RUAMzsJwN1nAbulGbdUoUMiIuVNoUMlpNAhEalqFDqUQwodEpHqRPdJiIhISioSIiKSkoqEiIikpCIhIiIpqUiIiEhKKhIiIpKSLoEtATPrCbzl7usr4v0VOlQ6ZRWIU52DbaTyynXokIpEBmZ2FzALuJ+QB3G3mW2MbfIqEL93oi9QB5gYW/aJu38TG7NUyXQiIuVNRSIDdz/XzK4D/gzcSdHGfAnxOxXbEf6u8WUrgG/MrBFwG7AYWBCtaw6MNrOJ7n5DrvdfRGRLqEikYWa/JIQHPQTcBGwHHEsoBAuAuu6+j5kdD/SIXtaEcK6nffT8bXcfG0umm0CYPdwCzAH2JiTTjTCzfRU8JCKViU5cpxE17ptIyHu4ARhDyIKYABxMlBlBSJbrBywEjiTMIhYBfYCO0TZKphORvKOZRGZTCLOHkUAhcDrhC7870N7M/hBt1xooIBSC2sB3hOyJBCXTiUjeUZHI7GCgLTCZcMipHyE0aCFwpruPMbM+wEbCCe46hCIxjVBUAFAynYjkIxWJzI4knJMYCTwKtAKWE/52Dc1sbLTdr4DjgaaEQ0qdgEkpxlQynYjkBRWJNMysLXAA8FtgvrufG1t3KfCpu88PAXXc5e43mtlAwgntcWbWEOhZzNBKphORvKAikd4q4OIoAyJeIF4mnFs4JNULzexQYCzwYjGrS5VMt1fLbZg56qisd14SVmbepBRye8uSSOWkZLpypmQ6EalslExXiSiZTkTyie6TEBGRlFQkREQkJRUJERFJSUVCRERSUpEQEZGUVCRERCQlXQKbhpk1Ae4CLif0YboOGEJouNcWqAtcSej62hW41rO48aS0oUNKpstvZZWQVxaUupe/lExXvrYiFIj+hJ5MnYHBhDutj3P3RAO/yWbWBbjXzPYgtNzYGfgYWOfuvwRQ6JCI5BsVifS2I7TWGAhsD7QEpgJXA9Ojnk0PAB+7+7WJF5lZK+Amd+8fW6bQIRHJOyoSabj7h2b2Z2BbQj6EAwcBL7O5w+uTwLVmdpi7D00zXCJ0qDWbQ4c2UDR0aE2ZfBARkVJSkcjsLeAiQnvwvsC8+Ep3/x74g5l1NrOt3H19inEUOiQieUdFIrNdCVkRS4B/Aw8CI4rZrle07ePFDaLQIRHJRyoSmR0K/AX4gPDf/y7Ap/ENzKwOcAppWocnUeiQiOQFFYk0zKwGcAwhna454ZzEqYTzCPtF2xjh5PatwG1mtl/s9TOihze6+9OxoRU6JCJ5QUUivT2BfxIuhZ1I+O/f3X1OrBjUAV5w96eAp7Ict1ShQyIi5U2hQ+VMoUMiUtkodKgSUeiQiOQT9W4SEZGUVCRERCQlFQkREUlJRUJERFJSkRARkZRUJEREJCUViQzMrF5F74OISEXRfRKZXWBmbYFlQJ/Y8kbRzx3AK7HlfQl3YU+MLfvE3b9JPFEynVR1uUzhU0peySiZrpy5+2gzuxSY6u5XJZabWR+gJ/A0oUtsQjvC3zV+9+IK4Bsl04lIvlGRSMPMfgFcDJwLbBNr2Pc/QiId7v4/MzsP6BGta0I4jNc+ev62u49VMp2I5COdk0jD3d8G7gWuAOoB77l7d8JsIa4D0A9YSOgY2xVYRDg81THaJpFMZ2xOptuTosl0KhAiUqloJpGBu79gZnWBuhk2bQ0UEApBbULc6a6x9UqmE5G8oyKRnQuAC4HjzWwfQuvwZBuBWYST1rWBaUBhYqWS6UQkH6lIZGBmvwQ+JBSBp919iJlNL2bTXwHHA00Jh5Q6AZNSDKtkOhHJCyoSaUSHmf4MDIhmAkMA3L1ndHVT3F3ufqOZDQTquvs4M2tIuAIqmZLpRCQvqEik1xYYGxWITcxsLGHmcEWqF5rZoYRY0xeLWV2qZLq9Wm7DzFFHZbfnIhVqZc5Gyu1V/1JSSqYrZ7lOplu/fj0FBQWsXbs2V7uYd+rWrUurVq3YaqviThWJSCZKpqtEcp1MV1BQQMOGDWnTpg1mlqth84a7s2zZMgoKCmjbtm1F745IlaP7JPLc2rVr2W677cqkQGzcuDHle77++uubni9atIh77rmHbGalGzYUXx8LCwtZs2YNX3/9NfPnz+eFF17gkUceyTiembHddttV65mUSFnSTKIKyKZAPPbYY3z77bdMnDiRFStWsG7dOgoKCqhVqxYtWrRg9OjR9OrVi+uvv56ePXvSo0cPhgwZwoMPPvizsT7//HPGjx/PgQceyKRJk3j//fe59957eeONN9h1110555xzaNIkXLDVu3dvpk2bxpIlS2jSpAmHHHII06cXvThs+PDhPPjggzRp0oRGjRrRrFkz2rdvT5cuXXL2+UWkdFQkqomNGzeyceNGbr75ZqZMmcKyZcuYOnUqp5xyCk2bNqVPnz78+te/Zuutt6Znz57MnDmTmTNncuSRR7Jx40Zq1qzJmDFj6HM96ewAACAASURBVNChA6+99hrPPfcc3bt3p0GDBpx55pnceeedANxyyy0cd9xxNGnShDVr1lBYWMiSJUsYOXIkgwYNSrl/F198MTvuuCMAt956K/379wfgX//6F8cdd1yZ/31EpHgqEtXAnXfeyahRoygsLOSZZ56hXbt27LHHHtSvX59WrVpx0003MWjQIJYvX84bb7zBW2+9RbNmzRg2bBiLFy/mtddeY6eddgJCsRk/fjzvvfceJ554Itdccw0vvvgiCxcuBKBv3760bNkSgJNPPplVq1YxePBgli9fzjvvvMOHH35I9+7dqVWrVpEZxerVq1myZAkQDl8lHotIxVKRqAaGDBlC48aN+fbbb2nQoAHXXnstb7/9NgUFBYwZM4b169ezZs0a1q9fz+DBg6lbty5z5sxhyZIl7LfffkyfPp3vv/+exo0b8/TTT9OvXz8uvvhi7rjjDvbYYw8uuOACxowZw6xZs/juu+9o2LAh06ZNY5999mH16tV06tSJevXqcc0119CzZ8+fHW4C2G+//TjppJPYbbfdaNq0Kffddx+fffYZS5curYC/mIgk6MR1BlUxdKhz584cfPDB7LTTTvTr149atWpRWFjIX/7yl03bnH/++Tz33HPUq1ePPffck++++44mTZpw4okncvnll/PFF1/QuXNnAD799FMuu+wy7r//furWDS2uevfuzfDhwwEYNWoUH3zwAd27d2fOnDl0796dYcOGbXqvn376iRo1atC9e3deeeUVDjvsMGbMmEGHDh3K748iIsXSTCKzTKFD17r7XQBmdi9wPXAQUMvdxxU3YC5Dh+45pgXrC1Zk/BBfLPuBFSt+5MC9D2C/g34E4PiBuzB1yr85qO/RLFi2jmkz5/LQo/+kdbtdWPr9Otp32pfxE57kwN59ePXNt/lg8febxvthXSFzClZQWFjItk2b0+fYXwNQe7tmzIntT2K7q265G4AzTjicu594DmDTdvM+XUjntTX4fm0hr/x3AW+9+z5zClbww0+FRcZKZ+l3azhCgUzVWi6DjkqisoUiKXSonGUKHUoUiEhNQt+mYlV06NC6tWu54sJzWbniO7ZpvC0ASxd/xcIvPqNps+35ftVKuux/ALt16sxjD/6Dm/5+H5ddcDa/G3pVseO9/cZrtO+wK7Vr12b7FuGk871jb6HPEUeXaL8+nPMubTt0ZK99u/D8xKfZvkVL3nr9VfbsvO+WfWAR2WIqEmlkEzqU4fU7AJcDfyQUjwoNHapTty4P/Ot5brthOIWFGxh6zUjGjr6O/Q/qTbceocXU328ZhdWowYibx/K3W27gN2efT8EXn7FTm803qq1fv54P5rzH0xMe5OpRt7J4UQH33H4zUPy9Fa++9Dx333YTAJ8u+IiBxxwGwAmn/obtmjWnXYdd+XbpUjYUFvLma9O4etSt/PP+e/jow7l8vWQxzXdQayuRiqIikYa7vx0dQroC+AchdKhIF1gzaw5Mjp62YXNOxNnAacA17r7RzLYlZE20ZnPo0AaKhg6tKevPVKNGDf545QjWrlnDvWNvYcozT3LMyUWn6Tu23Invli1ju6bN+fijedx5640M+/OoTeu32mor/v7QE+zbrTuFhYXs3qkz9z4eGt6eccLhP3vPXof2pdehfYvdnynPPMklfxrJxCcepV3HXfnt0CupUaMGF111LXPfm81br7/C0Sf2z+FfQERKQr2bsmBmxxDaew+JFYnhhMNNw2Pb3UcoEj2B7dz95ti6loQZQyPC7CHeRnwQ0N/dPy/mveOhQ11anTe+yPp7jmnB9jsnB+VVP0u//JSzJy6u6N2QCqRzEkFpzkmod9OWyyZ0KNlKADNrDKxS6JCI5CMViQwyhQ5FRWBfoDPQrZghzgU+Ax6LLVPokIjkBRWJNLIMHdqbkC3xOjA/WvY+8LCZDSHMGA5MGlqhQyKSF1Qk0ssYOuTurwCvRMtPAnD3WcBuacYtVehQVbNx40Zq1ND9nCKVmU5cl7Nchw7NmzeP3XffPVe7lxPjxo2jVq1aP2vo99NPP2XVZbY0KuPfQSRfbPGJawu9mPcDtk4sc/dXc7N71UuuQ4eSJd+RvaU+zzIutXv37psef/PNNwCbOsPWqVOHV155hYEDB2bVZVZEKo9sDzc9Tji5mjjs4oCKhGwyY8YMZs2axYMPPsiYMWMAGDp0KCeccAI9evQAyKrLrIhULtkeEN7e3Q9x999EP6eX6V5JXtpnn314993NN4zPmDGD/fffH6BIl9nTTz+dli1bbuoya2abusyKSOWSbZFYYGY7lumeSN6rWbMmffr04eGHH+aBBx7g4IMP3nRiOtsusyJSuWR7uOlA4HMzW0441OTurqIhP3PJJZfQt29f1q1bx6uvbj4iWa9ePT777DOeeOIJOnbsSI0aNejRowfPPvssRxxxBLNnz6ZmzZoVuOciUpysZhLuvqu713b3Hdy9hQqEFGfjxo08+eSTbNiwgW233ZYRI0awZs2aTeuWLFlCr169OOKII5gwYQKDBw9m2rRp9OzZs4L3XERSyapImNmeZvaWmX1uZjPMrFNZ75jkj2+//ZaRI0fSpUsX5s+fzwsvvMCUKVPYaaedOPDAA7nwwgtZunQpF154Ic2bN6dGjRqMHz+ea665hosuuohPPvmEXXbZpaI/hogUI9vDTbcDZ7v7nKh30W3AoWW3W1Ja2V6ymktbb701O+20E6+88gqNGjXatHzIkCGcffbZTJ48ucjy1q1b880337D99tszd+5chg8fzu23317u+y0imWV1M52ZTXP33qmeV2VmdiTQlZBA97M/lpl1A+6InjaLftcGVhM1+QMudvfXY68pVTJdnRYdvMUZY4osUxfYQF1gJSEX3WArW2fXkqioLrBrzKwf4d6Ig4F1Jd6LPOXuk82sC3Cvme1BKAA7Ax8D69z9l0B3ADMbFL2sFTDT3Z+Lj1XRyXQiIiWVbZE4lxCOcyMwjyjfoKozs/qEzIhrY8taATe5e//YssuBYyk6kxhgZsOBZ9z9hqgdR4Um04mIlFTaImFmtdy9EFhCyEAwqlcjuprAkWZ2mLsPTbNde0Jw0NHAF4Qur+8RZhuXRds0ohIk04mIlESmmcQDhAjOj9hcHBKFosofCHf374E/mFlnM9vK3den2bwGcAxwKqF7bG2KzrjqA/sTisWObI45bQYMBfoDnycPmpRMtyUfR0SkxNIWCXc/Lfrdtnx2p9LqBexK6GGVyhjgeXcvMLPXCTOETXeTVYdkuuXLvuWlKf/m5IFnVvSuiEiOZNsF9n9J2xYS0tWGRdkJVZaZ1QFOAQ7JsOlwd38DwN2nA/ub2S5sPtwUVyWT6a6/8hL6Hn08Tz36AE89urkFeNtdOnLtLX/d9PzR++6mYaNt+GrhQvb9RXe69dDNdCKVVbYnrl8Cnib8Z3wg4Zj63wn/PR9UNrtW8aIW6WOBW4HbzGy/2LoZ0cMbo99/M7O1SUPUAYoromWWTNd5XOtcDQXAnMFfZLXd7aNGULNmTQ476lgATjhVPSBFqoJsi0RHd38hevySmV3h7q+ZWbpj9FVBHeAFd38KeCrVRmZ2FNDf3ecnLU81kyhVMt1eLbdhZtLNcvPmzWP3VmXXPbVzFmN/+eWXfPXpfB775z8ZMGAADz/8MA0bNvzZdldffTVDhw6lZeP6NG68NRtX1aV9swbUWFHA7NmzOf300heWed/Xq5AbCaUyWpl5kwxKfqdB1VWS+yTOJxwiOQD40cw6k30X2bzk7mtJfx4isd3gFMs/BpLXvQa8kbRdXh/E33nnnZk8eTJXXXUVHTp0YNiwYcyePZs1a9awePFi2rVrx7Bhw9h5552ZMGHCz17/9ttvU7t27WJGFpGKlm2ROB0YBhwJfACcQbhSZ0gZ7VeVVdbJdBVl1KhRjBw5kjVr1lC3bl0A5s6dy5gxYxg3bhwAK1euZODAgfTt27fIa1966SVGjx5d7vssIpllVSTcfXl0xc5C4HVgrbtPKdM9k7wxe/Zs5s6dS5cuXTYViOJss802LFu2rMiyBQsWsGLFClq2bFnWuykipZBtF9hbCFf3nA7sDtxXhvskeWa//fbjoYceokGDBhm3nTKl6P8WrVu35p577imrXRORLZTt4aZu7n6Qmb3s7o+Y2e/LdK+kSoj3Q3z22We59trQ3WTp0qXUrFmTdevW8cgjj2zqEPvEE0/QqlWrCtlXESletkViq6iPkUc9iArLcJ9kSwzf8is7cuFPf/oTkyZN4txzzwXgqKOO4qijdPWRSL7JtkhMBt4htJCYQWhOJ1LEtGnTNj0eMWIEI0aMqLidEZGcyLZI/JJw6WsH4DN3X5ZhexERqQKyLRIOjCdq9GdmuPsVZbdblUem0KGkbae7e88ovW+wu/8uxXalCh16f9FK2lz2bJFl9xzTgvUFK7L7MFXY0u/WcETS3yYf5CIgR0omnwOFslGa0KF0si0SD2bepGrKFDpEaP99dbT5HlG7jvpAczNLJD2dFDX+U+iQiOSVbO+TuL+sd6QyyjZ0CHg2WjeM0OdqKXCQuz8Se51Ch0rou+XL+HbpEjrsvmdF74pItZXtTKK6yip0yMyuBhKX7lxBSO+rbWbvu3ti7lctQofeeXM6r059nl59+vLq1Oe5+OpN9ZUzTjicDYXF32xeWLieCZOnFVn28vPP8tO6dSoSIhVIRSKNbEOH3P1aMysA5hIa/V1sZn8FOpvZQndfQSlDh0pqwEu5bcr78KGvZbXd+b85iR9+WM3qVas44JeHAjDlX0/w7juhWe7I2+4EoPtBvXnnzaJjtu+4G18vWbzp+XkDT+L7VStZMO8DOuy+J5OeeqzI9udceAm9Di3a2kNEyoaKRHbShg6Z2WGEq792Bv4TLd6BMBO5Hzi2tKFD+ZJMN2bcw7g777z5Gm9ND1lLRxx3UpGZBMDvhl4JwJRnnmTDhkL6nXBKWD7olE3b/P2hJ/j4o3lcdM7pnHFu0XP/PXodTIOGjcryo4hIjIpEBplCh6LMiQsJJ69vBxLfijsQikoPM9vT3T+IvSzr0KF8SaZ77MF/8O47M1j+7Td02qcLAK9MfY6vCr5khx1bMfSakUA4HDX2L9exYvly3J3HHxpP/zPOLjJWYWEhI6+4mMbbbsuPP/ywafnEJx6lTfsOdNhtj/L7YCLVnIpEGiUIHboSuAc4j825EA3dfY2Z/dbdNyYNXWahQxVl4ODzGDj4PKZO+Tf/fvxR1q1dwy/7HP6zmUS3Hj25/6nnmPLMk3y3fBmfLfiIQ/oexbNPh0NK7s61l/2Rvbv+gn9NeIjHHxq/6bWLFmYXgCQiuaMikV7G0CEz2w0YB5zl7u+b2SFmNoYo37qYAgGlDB2qrN55czp33jKKVStXYGa0btcBsxpFzkmced6FAMx5dybfr1jB/+bNZeOGDTRush1PTXhg01jvvjODJk2bcsxJp7J08VfccPvdm9Zde/kfy/eDiQiW4f4wybHoUtia7v5TSV/btWtXnzlzZpFl8+bNY/fdd9/0fK/799rifYzL5sacVatWsXz5ctq0acMJJ5zABRdcgJkxadIkbrrppk3b9ezZk4suuoivvvqqyOsbNWrEY489xqRJkzYtmz9/PgcddBDt27fftOyzzz7jpZdeolOnTj/bh+S/g4hkz8xmuXvX4tZpJlHOqmLoUKNGjVi9ejXnn38+hYWFHHzwwUX6OMXdckvxbb/Wrk2OB4e+ffvy0EMPbXo+ZIgyrkTKm4pEFZPrW/KzdcUVV7Dzzjtz2223pd1u+vTpxS7v169f2tedcMIJLFiwgOuvv77U+ygiJafDTXkkm8NN1ZX+DiKll+5wU1bJdCIiUj2pSIiISEoqElVAdT9kWN0/v0hZUpHIc3Xr1mXZsmXV9ovS3Vm2bBl169at6F0RqZLy5uomMzvW3Z8xs8ZAZ2AX4PGoCV9px9zF3T8uwfYnAU8mhw+Z2bbu/l3seQegdlIrjjLRqlUrCgoK+Oabb8r6rSqtunXr0qpVq4reDZEqqUyLRJTA1tPdrzKzukAPoA9wKDCS0M6iAfBX4IxihrjG3Z83s9bAqcAz0etbAJ8Cw4CrYu83DkjcadWZkNeQMNfdB8e2rU8IADqKLJhZX+B0d3+imNUDos/a391XAyMId2F/kDTGQ8CehLCi4vRKd5Ndccl0kvBhRe+ASEpbmkBYkjS9ikqmK5EomGcSsBH4ycyOBx4lFIebCV+iPwHvE5rnrQEM+B7oAswCurr789GQ5xF6J/0GOImQv7AKqGlmXd39cICkIjDb3bun2c0/AjuZWfzC/UbAo/GEuKgFeAHQMPosMwhpcse7+3+j9x1rZl8BPc1sEaHwzTKzqcAZUQfYhFMJxfEid//GzDoCp8XbdIiIVBZlUiSiqM4/ACcTWmX3B2YAHYG1wEGEgnA/MI2ozxHhy7hT9HsvCIdygG6Ezqm/IWQy1Cb8pz7c3T9PvK+ZNQP+TfiSbhZ9oRtQ6O4Hxrb7BXA0sA/QNuyyf2pmtxIKV1xBcrExs/uAraLH3YBBwKXRWGOBBwizpunAZDPb390TtxSvBcYAT5nZGdH2F2f8o4qIVICymknsB4wCtgGOARYRWlE0Bc4kzDDGAQsJxWM5MJOQ2TAXaMXmL+t2QGPC7OM/hP/ipwPtgb3N7EN3HxAdzqoJHEf4b70BoTPrzsAwM9sBWEkoPvcDx7n7RjM7GCgkHL56iyiKNGbPWMfXhPaEL3fc/R0zax993jnA69HnrA38jzCDOgSYnHixu88yszOjZZNj6XUiIpVKWc0kZgPdo+P0Xd39OjP7FWH28BXhS3kB8AOwE+GLfFeKBvFgZn2jcxKzgIcJh5haEUKAkmcSuxGyouMuiX5/Fj2eQLii6zjgk+gcwbTove4Grks+KQ18kGImEf+8E8xsDuFk+llJr3/O3Sfzc9tGn+cAM2uY6gR8voQOiUjVVGYnrs3sFcJholVm1o/wH/Wq2Cb7Ar0Js41/AEcSZhNHA88BhxGO6+8FHE6YibxIKDA/m0m4+3vAe2b2SLQu/mX/lbufkLR/lwHvxhaNAR43s1+5+8rY8rQziZhhwMuEw1MnRe+xD5sLVfy9DwFuIsyyugN3AcWe2cqX0CERqZrK8j6Jm4AlhHMJ7wDbAR/F1k8HPgGWAj9Gy1YTisFqQjEgOhRzKOHQzWmEwzg9CYeFjnf3AUnv2wQ41N27J35ISn6L/jvvC9yRWObuHwL3Eg5rxX0QHysar8ghKTPrSjgfMS3zn4W20Xv0c/eC6GqpH80s+8sXRETKSVmdk9idEOl5KeEw0FLC1USj2Pwf8yHAY4R85+VEVzQRzg3sTSguP5lZG+DPwCOE/95fpOhMYh0wyN3nx3bhP2YWD/vZ1Ic6iiPtDhzt7j+F8LlN7gX+amY1o5beAJ3MrGhXvbDPY6PxmhDOcQyK1h0cm3nUp+hluAC3EK7seirpvR8zs2vdXde4ikilUVbnJOZF9xUcFi16B3jQ3X+MfTH+G5hKuOz0FUJhSHaeu99I7FBM9Pqe7l6YZhcOie5XSLxmWmzf1gH/Fy0/n1DMfh+t2wAkhxbMzXBOoiPwt+gEdhvg5djhpk7AZUnjHR+/Iqsk9mq5DTNHZXVbh4hUKiszb5JGRV7ZUuVahZtZ3djlprkYLz6rSCyzYk5wl7niWoWLiGypatUqPJcFIhrvZylyFVEgREQqQpUrEiIikjsqEiIikpKKhIiIpKQiISIiKalIiIhISioSIiKSUt4k05UlM2vm7hmj3So6mU6hQyJbLlMAUEkCfiqjXIcOVbqZRPzu6Oh5NzObEf18Ev0sNLN5seXxrIhBZtY/9vy5FO8zI/pdgxCQlGm/Esl0xd0jMcDMJplZoovtCGCHYsZ4yMzeje138k/tTPshIlKeKnwmYWbN2ZxiB7BrUtfV4xNtMcxsULSsFTDT3Z+LjbM/IWsi0/vtRIgsbW5mQwjNBVskvec1iVQ8JdOJSHVW4UWC0NX1Q3cflGoDM7scOBZoFnvNADMbDjwTxY1+CPyd0KQv3V3X6wk501MIDVVGAe8BlyY1CUxQMp2IVFuVoUhA0eyH4rQnfBEfDXxBSKt7D/iYqIGeu39vZncQus52juJTAXaLzRKOd/fFUYhRC+Br4K/AYOBFM/sBmJXUflzJdCJSbVWGIlGD8N99NtsdQzhc05bwJXxOfAN3H29mfyF0Yj0XwjkJdz88aaz6hNnE6YSI0wsJwUb/dPc3krZVMp2IVFuV4cT1tsCKLLYbAzzv7gWE/9avBDb1HTezPcxsCtA5i7G2IxyW+hKoB1xDmE08l3winGgmEf8hnNNINowQblQQCycaQigcRUTJdHcBJxDCme5KtaPufre7d3X3rjXrb5PFRxMRyZ3KUCS6E/ImMhnu7tcBuPt0d9+fol+uq4HzCId3MtkVmAfUdPeRhPMd7xGCjw5x99dj2yqZTkSqrQo93BSlug0iRIlm8jczSz4hXYfwxY67fxmNmRj7P4TDSttG//3Pdvfzo8tUWwHfADXNrBZhVnFDtPwq4IrYeyiZTkSqrYo+J7ETcIm7r8pi2/7JVx+Z2S78PPkNAHc/JMU4pxFmG7OAJ4GJhJPHk8ysJvBvMzvT3cdH2yuZTqRKSZ8Sp6tIiqpyyXSZWPTve+KmODPbzt2XxdZvBTRKLFMynYhUdemS6Sp6JlHukr/c4wUier4eWBZ7rmQ6Eam2KsOJaxERqaRUJEREJCUVCRERSUlFQkREUlKREBGRlFQkcszM6lX0PoiI5Eq1uwR2S5nZNHfvnWJdW0IvphMzjHE4IZSoFvAR8J27z8303kqmk8ouU+pbruR7elxZynUynYpEBlmEIt1G6CILsBfwUTGtxRMtyhtF2y8GFkTrmgOjzWxilIshIlJpqEhkljEUCXjUzDoDtwOnAA3c/ZP4BlHLjwnRz0eEHk5zgL2BgcAIM9vX3d/N/UcQESkdnZPITjZ3WI8BhgLdgJOLWd8IGE1ob34W0JqQaXEz0AEYrAIhIpWNZhKZZQxFMrNtCB1f7wAaA/XN7Lho9ePufnO0fn9CsdgRuC5a34xQXPoDnxcztkKHRKTCqEhkljEUyd1XmtmvCDkRU4F9CBnYo939h2ibRcCNZtYbGAA0iA3RJs3YdwN3A9Rp0UE9o0SkXOlwU2YZQ5HMrAUhiCgRfVoIzACmpggT+hKYHvv5Omd7KyKSQ5pJpJFNKFKUGfEUcKG7TzGzfgDR4yXA42Z2oLsXxl7WjnBCPKFFzndeRCQHVCTSyxiK5O5zzayru68ys26EvOwronXvmtnBSQUCYJy7D088MbPxZHdyXESkXFW70KGKFl0KW9PdfyrpaxU6JCJlQaFDlUgUYvSzICMRkcpIJ65FRCQlFQkREUlJRUJERFJSkRARkZRUJEREJCUVCRERSUmXwJaAmQ0Carn7uNiyboTGfhCa9UG4m3o1sDJ6frG7vx57jUKHRHKsvAKP4ipj+JFChyoZd3+H0N8pUUQAWgEz3f25+LYKHRKRfKMikUHU3XVGcmuOqD34/u7+gpldDhxL0ZnEADMbDjzj7jcodEhE8pGKRGanAf8Dkvs3NYvWvQC0JzQCPBr4gtDA7z3gY+CyaPtE6FBrNocObaBo6NCaMvwcIiIlphPXuVMDOIbQLtwJs4lzYusToUMd2Rw69Aih2AwHti/HfRURyYpmErkzBnje3QvM7HXCDOHVxMrShg4pmU5EKpKKRO4Md/c3ANx9OrC/me3C5sNNcYnQoYQmqQZVMp2IVCQView8bWbrEk/MbDBQB/hvbJu/mdnapNfVAWYVM55Ch0QkL6hIZOdkd/84vsDM2hDOJST0d/f5SdukmkkodEhE8oJChzIwszrAT56jP5RCh0SkslHo0BZw93WZtyrReAodEpG8oUtgRUQkJRUJERFJSUVCRERSUpEQEZGUVCRERCQlFQkREUlJRSLHzKxeRe+DiEiu6D6JEigumS5pfVvgJuDEDOMoma6aqYjUtLJUGRPZJMh1Mp1mElvIzI43sxlmNgOYC7RNPI/9tIi2bRS14OgFWDREc+CeKLhIRKRS0UwigyyS6Z4mNADsDNwOnAI0cPdPkrZXMp2I5B3NJDI7jeJbeSeS6RLGAEOBbsDJxWyfSKYzNifT7UnRZDoVCBGpVDSTyIFoVlEfuANoDNQ3s+Oi1Y+7+81sTqZrxOZkOgjFZijQH/i8mLEVOiQiFUZFIgfcfWV0WGoEMBXYB9gKGO3uP0TblCqZTqFDIlKRdLgpB6IT088S8q0BCoEZwFQzK+4ykEQyXeLn6/LYTxGRktJMIjspk+nMrBPwFHChu08xs34A0eMlwONmdqC7F8bGUzKdiOQFFYnspEymc/e5ZtbV3VeZWTfgGuAKAHd/18wOTioQoGQ6EckTSqbLQMl0IlLVKZluCyiZTkSqM524FhGRlFQkREQkJRUJERFJSUVCRERSUpEQEZGUVCTKkJnp7ysieU2XwJZAdKc1yaFDZtYOuB5oCkwC1gJdCVkRxxQzjkKHpFKryJAkBRptmVyHDqlIZGBm7wLrkpYNjh7WA04lNOC7Cfgj8HtgI/AmsK+ZfQ5c6e4Pm1kj4DZgMbAgGqM5MNrMJrr7DWX8cURESkSHQzL7yN27AwcQ/uvv4+7do2Xvu/uHwJnAZYTAof8BPYCXgCeB96ICkQgdehl4BhgMdAEuJoQOdTKzfcv3o4mIpKeZRBpm1gRoE0WTbk3IgdjVzOLbHAg8ANwFvEAoABMIM4Xt2VyIE6FDrdkcOrSBoqFDa8r+U4mIZE8ziTTcfXk0Y/gV4ZDTTtHz/wIXRI/XE4rE18AgwuGniYQAoubAF9FwidChjmwOHXqEEDo0nP9v787DLanqc49/X7ppmmYQGuiAIjQgaAQRBWLLg0waRcChLyQiIMOFCA6JGpAh3cwM0wAAGA1JREFUyiMKRCRgMBLScCEMchW8iPdysUHl0oR56FYhoIASBZvJlnmU6b1/rNpQ7N61z9D7nL1P836e5zycqlpVe9U5zf6dVVV7vaWgREQMlIwkhud44FFgVjVl+Fq2bwKwfaOktwLbAIcBU4EPAjtTLk/dWLUbVehQkukiop9SJIbnC8B7gTmUv/gvkrSh7V/X2lwJLAL+HPg98EvgM5TLVN9pO14rdKilU4Y2kGS6iOivFIkuJK1AdVOZcuP6HOCfgC2Bb0n6je2/q5p/AngAeJjypNMNwN8Cfyvpz23/qnbohA5FxISQItGF7ackPQ58D/h8Nc03lFHATpI2qDWfRykOcyj3GX5i+3xJDwI7APUikdChiJgQEjrUA5ImA3RIoOvUNqFDETFQEjo0xoZTHGptEzoUERNGHoGNiIhGKRIREdEoRSIiIhqlSERERKMUiYiIaJQiERERjVIkIiKi0cB8TkLSGsAmtuf147VtLxpGu92AH7jtE4iSVrX9SG15Q2CK7dt62c8k0wX0NzXutWCiJ+Mtzcl0LwC7S5pVT2irgni+XWs3nTKD6j21dZ+3PV/SKcA7G45/adtUGNfbnlXlUF9Mmca7kaQPAHvbvqDD5j2rSNLdbT8JfA04Hbit7RjnAhvTlnRXs81oPokdETFW+l4kqrmNfl9btbmkXavv1wF2sL21pEWUqbcfq76ghPWsb/upavmtwNbtn4CWNJOS34CkN1Km8Z4h6SDgaWCtKlio5Su2f1y1XwgsBFYCnqvazQBm274ZwPbJku4DtpZ0L6WILZB0GbBPNU14y8eBLwF/b3uRpI2APeoFLCJiUPS9SAA32d6l0wZJx/PqKSwWtjXZAFDbOiRdRHkjhxIQVM+Ofp7y1/wllGJzHPAL4FDbt3foxsIqXKh+/LOAZavvt6SEDR0KrAecTJkt9t2UiQDnSnqX7Wer3Z8FTgIulLRP1f7gTucfEdFvfS8STQWi2nZobXEKsHZbk6kNu05vvbFLquc2YPsBSQso03P/AfhXSt70TyU9BSywvWdtl43bRhlQitPJ1fFuqmaDPQ64BbgGWL3q752UGWR3AObW+rBA0n7Vurm2Gy8iJnQoIvqpr0WienM9v7ZqGrAa8NvauqNt/4iSGf1U27bJwEujeOlplNHE3sD/AD4H7Aicb/vatra3NYwkXmb7PEm3AG+i5FfXXWp7LotbFXgc2ErSSraf6NTRhA5FRD/1tUjYvgt4eXpaSVsAB9g+qN5O0nLATZRgnxVqm/5g++kOh3649tf/zR22rwacQcl9WB74CvA2YD9JvwQOtn1N1bbrSKLmMEqmxELbu1X93gw4pP3FJe1AyZ74MDALOBXIIysRMXD6frlpKJJmABdRnnD6LeVN9WzgIODMTvvY/nDbMWa2NXkzZQQxyfaxkk4HLgSeA3ZuKzxDjiSq4rYepdg0Xj6rrEd5+mkX2/cBF0jaUdI6tu8ZYt+IiHE18EWCcmP6JOANwKaUG9L7U0YAm0qaClxn+3dV++ulxe5lT6HcL0DSipR7G4uASVVg0BmUm9trA18G/qG27yaS2pN+ZlKNJCRNpxStfatt29dGHtNar1vzTUoxurCtn9+X1Lq0FhExEAamSEj6IuWN9vS2TctRbjL/Cvifth+o2k8B3k65t9B65HX31va2Y4tXMqX3oNxMXgD8gDJKmWv74io17v9K2s92a5Ry6xAjiY2AU6ob2DOBebXLTZsAh7d1Z3atoI3I297wOuYft/Nodo2lymNDN4lR6+1H0Sa+11x8aVUwaH1qWtJqth+qbV8WWLm1TtKkWrb1y8do/9T1eEh8aUSMhcSX1rS/udcLRLX8PPBQbXmxqNF+FIiIiH7IBH8REdEoRSIiIhqlSERERKMUiYiIaJQiERERjV5zTzeNVDWj7OurxZUpU4bXp/5+L/ARyvTgT1M+Cb4W5QNzDwHn2T6pw3H3Aqbabv9cSKOEDo2NhPgMjoke+DMIlubQoYFUn+JD0oeAv7B9ZG3dBsDtlA/1TQbmUCYLfAR4ENhJ0g2UoKFTaodeveyuA2rrDrV95VidS0TESKVIjMxKLJ4q9xQlP+JIyqevJ1dfy1I+5T0JmGz7Osq8U8DoRhIREeMtRWIIkg4G/qpaXBOYKqk1id+dtveWdCCwJWBgP1653PQs8P9sX1UdawYl4OgeykhimWoksSZluo6fj9NpRUQMS4rEEGyfCJwIIGkeJSnvMNsLam1urbK476XMPfV+yuWmmygjjZZlgBttf7QaSaxoe46kEygjjoiIgZKnm4ZJ0raUkKDjaMuIkLQK8NeUgvAo8AzlJvajLOFsbJI+KWm+pPkvPp2J3SJifGUkMQxVXsQ/U7Im7q/euA+uRhlQwpAepBpx8MrlpndX+2/U6QmnatsylFFEx/mgkkwXEf2UItGFpFWBLwHbAv/N9v3Vpk8A50g6DzgY+O/ANq0IUkmHUBLqzms75LNAezzqEZQQpNvH5iwiIkYvRaK7pym5E4fbbmVWYPtPwMck7UQJIPqHpozqOtuPAse3rTu2pz2OiOih11yexESWPImIGAvd8iRy4zoiIhqlSERERKMUiYiIaJQiERERjVIkIiKiUYpEREQ0SpGIiIhGKRIREdEon7juQtKpwOYNm39je/eq3b8DX7V9t6SrbW8taSZwlO192465I2Vq8MnAHcAjtm8dTn+STBdLk14lAibN7tWSTDe+3kxJmfssMJ+SAYHtsyTV39inAOp2IEkrA98C7gd+Xa2eARwv6SLbX+9x3yMillguNw3PJOD50e4saRJwHjAP+D/AAZQRysHAXsAmVR5FRMRAyUhieNYEHqBMAY6krqOGDlamTOy3LrB/9d8XKVOLbwgcYPuZnvU2IqJHMpIY2nLA24H/pGQ+LAfMbWszVKrcNOBdlAzs1wPHAN8F1gCOAv6saceEDkVEP2UkMbQ5wDdtvyTpRuBM4H9TLhO1rEDJiujI9r3ANyRtB+wJrFjbPLPbiyd0KCL6KUViaIfbvg3A9q+AWQBVRjWSlgPeCiwa5vHuAa6uLU/vXVcjInorRWJoZ0t6odMGSVOAfwcut/1itXreEMdbn/I0VMtaS97FiIixkSIxtB1t/7F9ZfUI7MaUN/0dW+ttHznE8U63fVTtOGfSkG8dEdFvSabrQtIU288N0WZSbRQx1PEmAZOGOmaTJNNFxFjolkyXkUQXw3kzH26BqLUddvuIiH7LI7AREdEoRSIiIhqlSERERKMUiYiIaJQiERERjVIkIiKiUYrEGJA0R9LWDdsOkvRXteUDJO07bp2LiBiBfE6iByR9EDi6tmodYDtJT7ZW1D6oMpmhZ43tKMl0MVH0KnVuIhi0ZLwk0w0g25cAl7SWJc0BzrV9dW3d2sAFlALylKTtKVOQ/wXwoqSDgE/b/tm4dj4ioosUiR6RtDewU7W4BfAmSa05n46pcqxnSbqMMlfTlyk//3so0afvtf3UOHc7IqKrFIne+SHwk4ZtDwNI2pQy1fi3KbPHXgxcTkmuex8l2jQiYmCkSPSOgTuBX7atn2Z7U0mTgX8GTgVuplye+irwA0po0f50KBKSPgl8EmDSymuMWecjIjrJ00299TPbs+pfQGuSwI8C3wF+Wy3vAXwTeAF4EFggaXb7AW2fZnsL21tMmva6cTiFiIhXZCTRW5tLap/LewqA7QsAJH22Wv9Ptu+qblgDfJ0yooiIGBgpEr21wPZ29RUdigYAtu9qW36OV0YdEREDIaFDPSRpedvPjNXxEzoUEWOhW+hQ7kn00FgWiIiIfkiRiIiIRikSERHRKEUiIiIapUhERESjFImIiGiUIhEREY1SJCIiolE+cT1Mks4A/hF4DzDZ9unV+uWBN9Safhz4E3Bhbd19tp9uO95ewNTWcYYjoUP991oK04lXG7RwoSYJHeqfSZTch3ZrAQe0rVuhbd1ZkqYBp9TWrQ5IUr3dobav7EVnIyJ6IUVilCStCRwBfMH24ZJOBzZpa3aX7T1ry7Nq+494JBERMd5SJLqQNAOYWy3OBI6pvv8bylTfX7H9UrXuTdXU4PX9r25bngH8gpJGtzqwTDWSWBOYbfvnY3EeERGjlSLRhe0/UKJIkXRWbdP3bZ/Y1nyKpOvb1k1tW14GuNH2R6uRxIq250g6gXI5azEJHYqIfkqRGJ3HACStAjxejSbeA3yI8jNdG7gb+PWSvpDt04DTAJZba8NM2RsR4yqPwHYhaRVJ20v6HLBlhyYHArtJWgE4E9igtu1PwPckfWqI11iGMopIAYiIgZMi0d3bgfcDdwG3V+v+EzikChPajzJiuJlyGenlS1C25wJbAbtK+stq9bPAtW2vcQTw5trxIyIGRi43dWH7P4D/AJC0W7VuAfCWVpvqcxLb2r5X0meALwL7V22fkPQRSo41th8Fjm97jWPH4VQiIkYlyXQTSJLpImIsJJkuIiJGJUUiIiIapUhERESjFImIiGiUIhEREY1SJCIiolGKRERENEqRGAFJu0laLFNC0qptyxtK2nj8ehYRMTYm5CeuJW0G7Gb7y7V176SE+ixLmda7NbneOsCDlLmUFgv1GW6ug6QPAHvbvqDD5j0l7QjsbvtJ4GvA6cBtbcc4F9i46ksn29h+rqkPSaaLQdLPlL6JkhLXD6/ZZDpJRwE7VovTgOmS3lctX2f7C5Jupcy39DqqqTCA6cAi4JHRpL5JWggsBFYCnqumA59ByX+4GcD2yZLuA7aWdC+wIrBA0mXAPrbvrR3y48CXgL+3vUjSRsAeto8aad8iIsbahCkSwJsof6n/TtIuwKa2/xFA0qVVmzUpOdQfq+23ELgKeFfVdl3g/Nr2TjGis23f39q/Q5jQWZQRC5K2BPYFDgXWA04GzgHeDVwNzJX0LtvPVrs/C5wEXChpn6r9wSP+aUREjIOJVCTq1qPMnPoqtneR9Bag/ZLQ3bb/tWpzNyOLEd24Q5jQBpQ3d2zfJGkD4DjgFuAaSuGZAtwJfA/YgVcS7rC9QNJ+1bq5tns7PoyI6JEJVyQkTQJ2Be6TdKTto2vbrqac0/LA2yj3JV4P3CZpMrBrVSSQ9L+AN/LqkcQLtrdue8nbGkYSL7N9nqRbKKOd/dv2v7SaNrzdqsDjwFaSVrL9RMP5JpkuIvpmohWJaZRLOd+npLVdKuni2vZLgc0pT20JuAxYA/g9sHyrQFTW6PDmf0WH1+w6kqg5DJhHuTy1W3W8zYBD2g8oaQfgBODDlFHNqZTM7MUkmS4i+mmiPQK7GzDP9im2XwA+TblJTTVSWJZyk3oapUDsS3nKaDblZvFo3GZ7Vv0LeNUjRpK2oFwCu2IYx1uP8vTTLrYXVk9LPS0pj2tExMCZaCOJc2z/rrVg+07gTkmHA1Mpj5Y+AqwFPA/8hHKj+AjgckkHtp5IAtboMELYqMNrblKl0NXNpBpJSJoOnE0pSADb1447jXKfou6bwHOUG9f19d+XdLTtPOMaEQNjohWJV5G0MnA5cAOwQrX6Usqb9lcol4Vut32DpDt45bFYgEW2t2s73hUdXubWIe5JbAScUt3AnkkZ6bQuN20CHN52vNn1QjcSb3vD65h/3M6j2TViDDzWt1fOkx7jZ8Ik01Wfan7c9ovDbL8S8Ex1WWpJXndS+2tKkvvwg0syXUSMhW7JdBNmJGH7kRG27/i00Ched7Gi1I8CERHRDxPtxnVERIyjFImIiGiUIhEREY1SJCIiolGKRERENEqRiIiIRhPmEdh+kfRu4NsNm08DLqRM7NfyAWA54KLaurtsL6odc0fKtOaTgTsoWRe3DtWXhA5FDE8/A5GGMtaBSa/Z0KF+sX0d0PFDJgBVaFB9+/qUn2t93aPAouoT4t8C7ueV5LwZwPGSLrL99V72PSJiSaVILCHbd0r6FCVkCEoS3jKUKUEAbqyS6yYB51Vfd1DmcLqFkqS3F/A1Se+w/fNxPYGIiC5SJLqQtDllGm8oIUIrAg+3NTsK2BDYBfg3yhv+H4EzgH14JQBpZeB4YF1K5sS6wIvAidX+B9h+ZoxOJSJiVFIkurC9gOqyUTXT7MO2T5O0gu2nWu0kHUR5019IKQRTKLPR1tPzplEiVFemBCEdU61fA/gisDvwu/Y+JHQoIvopRWIYJE2jpOG9p1p1gqTrbJ9Ta/YSsIBy03oKJVvi5ckFbd8LfEPSdsCelFFJy8ym107oUET0U4rE8BwOnARMlvRGYA5wtqSHbbeS8d5PCTdanZKKtwlwcaeDAfcAV9eWp49JryMillCKRBeSlqHkVcyg3Gf4a0ry3SJKjOqRkq6smp9q+xuS9gKm2j69mq68PTMbyhNQU2rLa43VOURELIkUiS5svwRs17Rd0jVAx0tAkt5LSa/7aYfNp9s+qtb2zKbjRET004QJHVpaVI/CTrL93Ej3TehQRIyFpSJ0aGlRhRgNK10vIqLfMndTREQ0SpGIiIhGKRIREdEoRSIiIhqlSERERKMUiYiIaJQi0WOStpa0bL/7ERHRC/mcxAhIusL2dh3Wn0qZ3O9sSl7EaZJeqjW5yPYtbfu8PH3HcF8/yXSDY5CTz17rxjr5bdAlmW4A2T5Q0jHAVymT/13d1uQPkt4JnFJbtzogSQfU1h1q+0oiIgZEisQSkrQt8DfAucAJwGrARyiT+P2aMlrYDHgAmFXbb8QjiYiI8ZYiMTIrSrq+tny07R9J+jNKJsTXgbWBHwKfAw4BLm01ljQD+AVlqvDVgWWqkcSawOxEl0bEoEmRGJknO92TAC6hjB6OpQQN7U1JoJsFbCDp87ZPojwocKPtj1YjiRVtz5F0AjCp0wsmmS4i+ilFoje2B9YD5lIuOe1CGS38HtivKhCjkmS6iOinFIne2IlyT+JY4HuUS04PU36+K0k62fbtnXasgo0mkTyJiBhAKRJdSJpOGR20rNN2TwLgM8BW1X9vt31gbf9Dgf+qFYhngWvb9j8CeDPQsYhERPRTQoeWkKTVgHfa/mnb+nmU+xI72H6sw34v35MY7msldCgixkJCh8aQ7YfoEFFqe/sh9jt3zDoVEdEjmZYjIiIapUhERESjFImIiGiUG9cTiKQngDv63Y8eWx34Y7870WNL4znB0nleOadiXdsdP62bG9cTyx1NTyBMVJLm55wmhqXxvHJOQ8vlpoiIaJQiERERjVIkJpbT+t2BMZBzmjiWxvPKOQ0hN64jIqJRRhIREdEoRWJASTpc0jXV16y2be+QdFX19dV+9XGkhjinj0m6QdK1kuZUs+MOvG7nVGtzvKTjxrtvozXE72kzSVdUv6sLJE3tVz9HYohzmi1pvqQFkg7uVx9HQ9I2khaLPO7pe4TtfA3YF/BW4EpAwLrA/Lbt1wMbVd//GHhHv/u8JOcETAV+C6xQLZ8PfKjffV7S31PV5h3Ag8Bx/e5vL84JuJHyTD3Ap4G39LvPPTinuymxw1OA/wJm9LvPwzyvw4BbgOs7bOvZe8SE+GvtNeg9wI9d3A1MlrQygKTlgOm276zaXlK1H3SN5wQ8B2xl+6lqWZSEv0HX7ZyQNAk4nhJENVF0+7c3E3gaOKz663UlN+SkDJiuvyfKv7VplD9W7gee6EMfR+M3wK7tK3v9HpEiMZhWAx6tLT9ZrWtte6xh2yBrPCfbL9m+H0DS3wGrUMsGH2Ddfk8ABwPfBRaNZ6eWULdzWosSyTsH2AHYXtL7xrd7ozLU7+lESvb8bcC9lD9SBp7tHwDPd9jU0/eIFInB9AiwUm15FeChYWwbZF37reI44C+B2a7GyQOu8ZwkbQBsZ/vMfnRsCXT7PT0L3GX7FtsvAD+iXE4bdN1+T+sAnwU2AGZS3nT3Hd/u9VxP3yNSJAbTVcD7ASStBzxv+3EA288Aj0laX5KADwJX962nw9d4TpVTKSFNH6lddhp03c5pZ2CGpCuAw4E9JH2iL70cmW7n9CtgNUnrV8vbUq6JD7pu5zSVUvyetP0i8ADweMejTBC9fo/I3E0DyPatkuZJuoqSf/2p6g1miu0zKH/5nEMZFl9m+2d97O6wdDsn4GfAAZT/mS8v/675lu0f9q3DwzDE7+lfgH8BkLQv5Qbvd/rX2+EZ6t9e9f13Jb0EXGv7x33t8DAM45zOBa6R9CfgVkpO/YQzVu8R+TBdREQ0yuWmiIholCIRERGNUiQiIqJRikRERDRKkYiIiEYpEhER0ShFIiIiGqVIREREo/8PbPdsSxHCvgoAAAAASUVORK5CYII=\n",
                        "text/plain": [
                            "<Figure size 360x720 with 1 Axes>"
                        ]
                    },
                    "metadata": {
                        "needs_background": "light"
                    },
                    "output_type": "display_data"
                }
            ],
            "source": [
                "pd.crosstab(df.region, df.\u535a\u7269\u9986\u6027\u8d28, normalize='index').plot(kind='barh', figsize=(5,10), stacked=True)"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Per capita adjustments\n",
                "\n",
                "To judge the number of museums per person (or the number of people per museum), we'll need to combine the province counts with population counts."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 15,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/html": [
                            "<div>\n",
                            "<style scoped>\n",
                            "    .dataframe tbody tr th:only-of-type {\n",
                            "        vertical-align: middle;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe tbody tr th {\n",
                            "        vertical-align: top;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe thead th {\n",
                            "        text-align: right;\n",
                            "    }\n",
                            "</style>\n",
                            "<table border=\"1\" class=\"dataframe\">\n",
                            "  <thead>\n",
                            "    <tr style=\"text-align: right;\">\n",
                            "      <th></th>\n",
                            "      <th>index</th>\n",
                            "      <th>museums</th>\n",
                            "    </tr>\n",
                            "  </thead>\n",
                            "  <tbody>\n",
                            "    <tr>\n",
                            "      <th>0</th>\n",
                            "      <td>\u5c71\u4e1c\u7701</td>\n",
                            "      <td>339</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>1</th>\n",
                            "      <td>\u6d59\u6c5f\u7701</td>\n",
                            "      <td>277</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>2</th>\n",
                            "      <td>\u6c5f\u82cf\u7701</td>\n",
                            "      <td>274</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>3</th>\n",
                            "      <td>\u6cb3\u5357\u7701</td>\n",
                            "      <td>265</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>4</th>\n",
                            "      <td>\u5e7f\u4e1c\u7701</td>\n",
                            "      <td>252</td>\n",
                            "    </tr>\n",
                            "  </tbody>\n",
                            "</table>\n",
                            "</div>"
                        ],
                        "text/plain": [
                            "  index  museums\n",
                            "0   \u5c71\u4e1c\u7701      339\n",
                            "1   \u6d59\u6c5f\u7701      277\n",
                            "2   \u6c5f\u82cf\u7701      274\n",
                            "3   \u6cb3\u5357\u7701      265\n",
                            "4   \u5e7f\u4e1c\u7701      252"
                        ]
                    },
                    "execution_count": 15,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "regions = df.region.value_counts().to_frame('museums').reset_index()\n",
                "regions.head()"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "This dataset has been cleaned a little bit to make sure the columns match."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 16,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/html": [
                            "<div>\n",
                            "<style scoped>\n",
                            "    .dataframe tbody tr th:only-of-type {\n",
                            "        vertical-align: middle;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe tbody tr th {\n",
                            "        vertical-align: top;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe thead th {\n",
                            "        text-align: right;\n",
                            "    }\n",
                            "</style>\n",
                            "<table border=\"1\" class=\"dataframe\">\n",
                            "  <thead>\n",
                            "    <tr style=\"text-align: right;\">\n",
                            "      <th></th>\n",
                            "      <th>ISO</th>\n",
                            "      <th>Province</th>\n",
                            "      <th>Chinese</th>\n",
                            "      <th>Population</th>\n",
                            "    </tr>\n",
                            "  </thead>\n",
                            "  <tbody>\n",
                            "    <tr>\n",
                            "      <th>0</th>\n",
                            "      <td>CN-AH</td>\n",
                            "      <td>Anhui Province</td>\n",
                            "      <td>\u5b89\u5fbd\u7701</td>\n",
                            "      <td>59500510</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>1</th>\n",
                            "      <td>CN-BJ</td>\n",
                            "      <td>Beijing Municipality</td>\n",
                            "      <td>\u5317\u4eac\u5e02</td>\n",
                            "      <td>19612368</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>2</th>\n",
                            "      <td>CN-CQ</td>\n",
                            "      <td>Chongqing Municipality</td>\n",
                            "      <td>\u91cd\u5e86\u5e02</td>\n",
                            "      <td>28846170</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>3</th>\n",
                            "      <td>CN-FJ</td>\n",
                            "      <td>Fujian Province[e]</td>\n",
                            "      <td>\u798f\u5efa\u7701</td>\n",
                            "      <td>36894216</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>4</th>\n",
                            "      <td>CN-GD</td>\n",
                            "      <td>Guangdong Province</td>\n",
                            "      <td>\u5e7f\u4e1c\u7701</td>\n",
                            "      <td>104303132</td>\n",
                            "    </tr>\n",
                            "  </tbody>\n",
                            "</table>\n",
                            "</div>"
                        ],
                        "text/plain": [
                            "     ISO                Province Chinese  Population\n",
                            "0  CN-AH          Anhui Province     \u5b89\u5fbd\u7701    59500510\n",
                            "1  CN-BJ    Beijing Municipality     \u5317\u4eac\u5e02    19612368\n",
                            "2  CN-CQ  Chongqing Municipality     \u91cd\u5e86\u5e02    28846170\n",
                            "3  CN-FJ      Fujian Province[e]     \u798f\u5efa\u7701    36894216\n",
                            "4  CN-GD      Guangdong Province     \u5e7f\u4e1c\u7701   104303132"
                        ]
                    },
                    "execution_count": 16,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "pop = pd.read_csv(\"data/population-cleaned.csv\")\n",
                "pop.head()"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "We'll merge on the Chinese name for each region."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 17,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/html": [
                            "<div>\n",
                            "<style scoped>\n",
                            "    .dataframe tbody tr th:only-of-type {\n",
                            "        vertical-align: middle;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe tbody tr th {\n",
                            "        vertical-align: top;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe thead th {\n",
                            "        text-align: right;\n",
                            "    }\n",
                            "</style>\n",
                            "<table border=\"1\" class=\"dataframe\">\n",
                            "  <thead>\n",
                            "    <tr style=\"text-align: right;\">\n",
                            "      <th></th>\n",
                            "      <th>index</th>\n",
                            "      <th>museums</th>\n",
                            "      <th>ISO</th>\n",
                            "      <th>Province</th>\n",
                            "      <th>Chinese</th>\n",
                            "      <th>Population</th>\n",
                            "    </tr>\n",
                            "  </thead>\n",
                            "  <tbody>\n",
                            "    <tr>\n",
                            "      <th>0</th>\n",
                            "      <td>\u5c71\u4e1c\u7701</td>\n",
                            "      <td>339</td>\n",
                            "      <td>CN-SD</td>\n",
                            "      <td>Shandong Province</td>\n",
                            "      <td>\u5c71\u4e1c\u7701</td>\n",
                            "      <td>95793065</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>1</th>\n",
                            "      <td>\u6d59\u6c5f\u7701</td>\n",
                            "      <td>277</td>\n",
                            "      <td>CN-ZJ</td>\n",
                            "      <td>Zhejiang Province</td>\n",
                            "      <td>\u6d59\u6c5f\u7701</td>\n",
                            "      <td>54426891</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>2</th>\n",
                            "      <td>\u6c5f\u82cf\u7701</td>\n",
                            "      <td>274</td>\n",
                            "      <td>CN-JS</td>\n",
                            "      <td>Jiangsu Province</td>\n",
                            "      <td>\u6c5f\u82cf\u7701</td>\n",
                            "      <td>78659903</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>3</th>\n",
                            "      <td>\u6cb3\u5357\u7701</td>\n",
                            "      <td>265</td>\n",
                            "      <td>CN-HA</td>\n",
                            "      <td>Henan Province</td>\n",
                            "      <td>\u6cb3\u5357\u7701</td>\n",
                            "      <td>94023567</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>4</th>\n",
                            "      <td>\u5e7f\u4e1c\u7701</td>\n",
                            "      <td>252</td>\n",
                            "      <td>CN-GD</td>\n",
                            "      <td>Guangdong Province</td>\n",
                            "      <td>\u5e7f\u4e1c\u7701</td>\n",
                            "      <td>104303132</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>5</th>\n",
                            "      <td>\u9655\u897f\u7701</td>\n",
                            "      <td>236</td>\n",
                            "      <td>CN-SN</td>\n",
                            "      <td>Shaanxi Province</td>\n",
                            "      <td>\u9655\u897f\u7701</td>\n",
                            "      <td>37327378</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>6</th>\n",
                            "      <td>\u56db\u5ddd\u7701</td>\n",
                            "      <td>216</td>\n",
                            "      <td>CN-SC</td>\n",
                            "      <td>Sichuan Province</td>\n",
                            "      <td>\u56db\u5ddd\u7701</td>\n",
                            "      <td>80418200</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>7</th>\n",
                            "      <td>\u6e56\u5317\u7701</td>\n",
                            "      <td>197</td>\n",
                            "      <td>CN-HB</td>\n",
                            "      <td>Hubei Province</td>\n",
                            "      <td>\u6e56\u5317\u7701</td>\n",
                            "      <td>57237740</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>8</th>\n",
                            "      <td>\u9ed1\u9f99\u6c5f\u7701</td>\n",
                            "      <td>193</td>\n",
                            "      <td>CN-HL</td>\n",
                            "      <td>Heilongjiang Province</td>\n",
                            "      <td>\u9ed1\u9f99\u6c5f\u7701</td>\n",
                            "      <td>38312224</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>9</th>\n",
                            "      <td>\u7518\u8083\u7701</td>\n",
                            "      <td>183</td>\n",
                            "      <td>CN-GS</td>\n",
                            "      <td>Gansu Province</td>\n",
                            "      <td>\u7518\u8083\u7701</td>\n",
                            "      <td>25575254</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>10</th>\n",
                            "      <td>\u5b89\u5fbd\u7701</td>\n",
                            "      <td>182</td>\n",
                            "      <td>CN-AH</td>\n",
                            "      <td>Anhui Province</td>\n",
                            "      <td>\u5b89\u5fbd\u7701</td>\n",
                            "      <td>59500510</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>11</th>\n",
                            "      <td>\u5317\u4eac\u5e02</td>\n",
                            "      <td>146</td>\n",
                            "      <td>CN-BJ</td>\n",
                            "      <td>Beijing Municipality</td>\n",
                            "      <td>\u5317\u4eac\u5e02</td>\n",
                            "      <td>19612368</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>12</th>\n",
                            "      <td>\u6c5f\u897f\u7701</td>\n",
                            "      <td>137</td>\n",
                            "      <td>CN-JX</td>\n",
                            "      <td>Jiangxi Province</td>\n",
                            "      <td>\u6c5f\u897f\u7701</td>\n",
                            "      <td>44567475</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>13</th>\n",
                            "      <td>\u6e56\u5357\u7701</td>\n",
                            "      <td>129</td>\n",
                            "      <td>CN-HN</td>\n",
                            "      <td>Hunan Province</td>\n",
                            "      <td>\u6e56\u5357\u7701</td>\n",
                            "      <td>65683722</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>14</th>\n",
                            "      <td>\u5c71\u897f\u7701</td>\n",
                            "      <td>121</td>\n",
                            "      <td>CN-SX</td>\n",
                            "      <td>Shanxi Province</td>\n",
                            "      <td>\u5c71\u897f\u7701</td>\n",
                            "      <td>35712111</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>15</th>\n",
                            "      <td>\u4e0a\u6d77\u5e02</td>\n",
                            "      <td>116</td>\n",
                            "      <td>CN-SH</td>\n",
                            "      <td>Shanghai Municipality</td>\n",
                            "      <td>\u4e0a\u6d77\u5e02</td>\n",
                            "      <td>23019148</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>16</th>\n",
                            "      <td>\u798f\u5efa\u7701</td>\n",
                            "      <td>111</td>\n",
                            "      <td>CN-FJ</td>\n",
                            "      <td>Fujian Province[e]</td>\n",
                            "      <td>\u798f\u5efa\u7701</td>\n",
                            "      <td>36894216</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>17</th>\n",
                            "      <td>\u4e91\u5357\u7701</td>\n",
                            "      <td>101</td>\n",
                            "      <td>CN-YN</td>\n",
                            "      <td>Yunnan Province</td>\n",
                            "      <td>\u4e91\u5357\u7701</td>\n",
                            "      <td>45966239</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>18</th>\n",
                            "      <td>\u65b0\u7586\u7ef4\u543e\u5c14\u81ea\u6cbb\u533a</td>\n",
                            "      <td>100</td>\n",
                            "      <td>CN-XJ</td>\n",
                            "      <td>Xinjiang Uyghur Autonomous Region</td>\n",
                            "      <td>\u65b0\u7586\u7ef4\u543e\u5c14\u81ea\u6cbb\u533a</td>\n",
                            "      <td>21813334</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>19</th>\n",
                            "      <td>\u5e7f\u897f\u58ee\u65cf\u81ea\u6cbb\u533a</td>\n",
                            "      <td>99</td>\n",
                            "      <td>CN-GX</td>\n",
                            "      <td>Guangxi Zhuang Autonomous Region</td>\n",
                            "      <td>\u5e7f\u897f\u58ee\u65cf\u81ea\u6cbb\u533a</td>\n",
                            "      <td>46026629</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>20</th>\n",
                            "      <td>\u6cb3\u5317\u7701</td>\n",
                            "      <td>97</td>\n",
                            "      <td>CN-HE</td>\n",
                            "      <td>Hebei Province</td>\n",
                            "      <td>\u6cb3\u5317\u7701</td>\n",
                            "      <td>71854202</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>21</th>\n",
                            "      <td>\u8fbd\u5b81\u7701</td>\n",
                            "      <td>93</td>\n",
                            "      <td>CN-LN</td>\n",
                            "      <td>Liaoning Province</td>\n",
                            "      <td>\u8fbd\u5b81\u7701</td>\n",
                            "      <td>43746323</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>22</th>\n",
                            "      <td>\u8d35\u5dde\u7701</td>\n",
                            "      <td>81</td>\n",
                            "      <td>CN-GZ</td>\n",
                            "      <td>Guizhou Province</td>\n",
                            "      <td>\u8d35\u5dde\u7701</td>\n",
                            "      <td>34746468</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>23</th>\n",
                            "      <td>\u91cd\u5e86\u5e02</td>\n",
                            "      <td>69</td>\n",
                            "      <td>CN-CQ</td>\n",
                            "      <td>Chongqing Municipality</td>\n",
                            "      <td>\u91cd\u5e86\u5e02</td>\n",
                            "      <td>28846170</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>24</th>\n",
                            "      <td>\u5929\u6d25\u5e02</td>\n",
                            "      <td>56</td>\n",
                            "      <td>CN-TJ</td>\n",
                            "      <td>Tianjin Municipality</td>\n",
                            "      <td>\u5929\u6d25\u5e02</td>\n",
                            "      <td>12938224</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>25</th>\n",
                            "      <td>\u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a</td>\n",
                            "      <td>39</td>\n",
                            "      <td>CN-NX</td>\n",
                            "      <td>Ningxia Hui Autonomous Region</td>\n",
                            "      <td>\u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a</td>\n",
                            "      <td>6301350</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>26</th>\n",
                            "      <td>\u9752\u6d77\u7701</td>\n",
                            "      <td>32</td>\n",
                            "      <td>CN-QH</td>\n",
                            "      <td>Qinghai Province</td>\n",
                            "      <td>\u9752\u6d77\u7701</td>\n",
                            "      <td>5626722</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>27</th>\n",
                            "      <td>\u6d77\u5357\u7701</td>\n",
                            "      <td>24</td>\n",
                            "      <td>CN-HI</td>\n",
                            "      <td>Hainan Province</td>\n",
                            "      <td>\u6d77\u5357\u7701</td>\n",
                            "      <td>9171300</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>28</th>\n",
                            "      <td>\u897f\u85cf\u81ea\u6cbb\u533a</td>\n",
                            "      <td>8</td>\n",
                            "      <td>CN-XZ</td>\n",
                            "      <td>Tibet Autonomous Region</td>\n",
                            "      <td>\u897f\u85cf\u81ea\u6cbb\u533a</td>\n",
                            "      <td>3002166</td>\n",
                            "    </tr>\n",
                            "  </tbody>\n",
                            "</table>\n",
                            "</div>"
                        ],
                        "text/plain": [
                            "       index  museums    ISO                           Province   Chinese  \\\n",
                            "0        \u5c71\u4e1c\u7701      339  CN-SD                  Shandong Province       \u5c71\u4e1c\u7701   \n",
                            "1        \u6d59\u6c5f\u7701      277  CN-ZJ                  Zhejiang Province       \u6d59\u6c5f\u7701   \n",
                            "2        \u6c5f\u82cf\u7701      274  CN-JS                   Jiangsu Province       \u6c5f\u82cf\u7701   \n",
                            "3        \u6cb3\u5357\u7701      265  CN-HA                     Henan Province       \u6cb3\u5357\u7701   \n",
                            "4        \u5e7f\u4e1c\u7701      252  CN-GD                 Guangdong Province       \u5e7f\u4e1c\u7701   \n",
                            "5        \u9655\u897f\u7701      236  CN-SN                   Shaanxi Province       \u9655\u897f\u7701   \n",
                            "6        \u56db\u5ddd\u7701      216  CN-SC                   Sichuan Province       \u56db\u5ddd\u7701   \n",
                            "7        \u6e56\u5317\u7701      197  CN-HB                     Hubei Province       \u6e56\u5317\u7701   \n",
                            "8       \u9ed1\u9f99\u6c5f\u7701      193  CN-HL              Heilongjiang Province      \u9ed1\u9f99\u6c5f\u7701   \n",
                            "9        \u7518\u8083\u7701      183  CN-GS                     Gansu Province       \u7518\u8083\u7701   \n",
                            "10       \u5b89\u5fbd\u7701      182  CN-AH                     Anhui Province       \u5b89\u5fbd\u7701   \n",
                            "11       \u5317\u4eac\u5e02      146  CN-BJ               Beijing Municipality       \u5317\u4eac\u5e02   \n",
                            "12       \u6c5f\u897f\u7701      137  CN-JX                   Jiangxi Province       \u6c5f\u897f\u7701   \n",
                            "13       \u6e56\u5357\u7701      129  CN-HN                     Hunan Province       \u6e56\u5357\u7701   \n",
                            "14       \u5c71\u897f\u7701      121  CN-SX                    Shanxi Province       \u5c71\u897f\u7701   \n",
                            "15       \u4e0a\u6d77\u5e02      116  CN-SH              Shanghai Municipality       \u4e0a\u6d77\u5e02   \n",
                            "16       \u798f\u5efa\u7701      111  CN-FJ                 Fujian Province[e]       \u798f\u5efa\u7701   \n",
                            "17       \u4e91\u5357\u7701      101  CN-YN                    Yunnan Province       \u4e91\u5357\u7701   \n",
                            "18  \u65b0\u7586\u7ef4\u543e\u5c14\u81ea\u6cbb\u533a      100  CN-XJ  Xinjiang Uyghur Autonomous Region  \u65b0\u7586\u7ef4\u543e\u5c14\u81ea\u6cbb\u533a   \n",
                            "19   \u5e7f\u897f\u58ee\u65cf\u81ea\u6cbb\u533a       99  CN-GX   Guangxi Zhuang Autonomous Region   \u5e7f\u897f\u58ee\u65cf\u81ea\u6cbb\u533a   \n",
                            "20       \u6cb3\u5317\u7701       97  CN-HE                     Hebei Province       \u6cb3\u5317\u7701   \n",
                            "21       \u8fbd\u5b81\u7701       93  CN-LN                  Liaoning Province       \u8fbd\u5b81\u7701   \n",
                            "22       \u8d35\u5dde\u7701       81  CN-GZ                   Guizhou Province       \u8d35\u5dde\u7701   \n",
                            "23       \u91cd\u5e86\u5e02       69  CN-CQ             Chongqing Municipality       \u91cd\u5e86\u5e02   \n",
                            "24       \u5929\u6d25\u5e02       56  CN-TJ               Tianjin Municipality       \u5929\u6d25\u5e02   \n",
                            "25   \u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a       39  CN-NX      Ningxia Hui Autonomous Region   \u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a   \n",
                            "26       \u9752\u6d77\u7701       32  CN-QH                   Qinghai Province       \u9752\u6d77\u7701   \n",
                            "27       \u6d77\u5357\u7701       24  CN-HI                    Hainan Province       \u6d77\u5357\u7701   \n",
                            "28     \u897f\u85cf\u81ea\u6cbb\u533a        8  CN-XZ            Tibet Autonomous Region     \u897f\u85cf\u81ea\u6cbb\u533a   \n",
                            "\n",
                            "    Population  \n",
                            "0     95793065  \n",
                            "1     54426891  \n",
                            "2     78659903  \n",
                            "3     94023567  \n",
                            "4    104303132  \n",
                            "5     37327378  \n",
                            "6     80418200  \n",
                            "7     57237740  \n",
                            "8     38312224  \n",
                            "9     25575254  \n",
                            "10    59500510  \n",
                            "11    19612368  \n",
                            "12    44567475  \n",
                            "13    65683722  \n",
                            "14    35712111  \n",
                            "15    23019148  \n",
                            "16    36894216  \n",
                            "17    45966239  \n",
                            "18    21813334  \n",
                            "19    46026629  \n",
                            "20    71854202  \n",
                            "21    43746323  \n",
                            "22    34746468  \n",
                            "23    28846170  \n",
                            "24    12938224  \n",
                            "25     6301350  \n",
                            "26     5626722  \n",
                            "27     9171300  \n",
                            "28     3002166  "
                        ]
                    },
                    "execution_count": 17,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "merged = regions.merge(pop, right_on='Chinese', left_on='index')\n",
                "merged"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "And then perform some small calculations to build two new columns relating the number of people to the number of museums."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 18,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/html": [
                            "<div>\n",
                            "<style scoped>\n",
                            "    .dataframe tbody tr th:only-of-type {\n",
                            "        vertical-align: middle;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe tbody tr th {\n",
                            "        vertical-align: top;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe thead th {\n",
                            "        text-align: right;\n",
                            "    }\n",
                            "</style>\n",
                            "<table border=\"1\" class=\"dataframe\">\n",
                            "  <thead>\n",
                            "    <tr style=\"text-align: right;\">\n",
                            "      <th></th>\n",
                            "      <th>index</th>\n",
                            "      <th>museums</th>\n",
                            "      <th>ISO</th>\n",
                            "      <th>Province</th>\n",
                            "      <th>Chinese</th>\n",
                            "      <th>Population</th>\n",
                            "      <th>people_per_museum</th>\n",
                            "      <th>museums_per_1m</th>\n",
                            "    </tr>\n",
                            "  </thead>\n",
                            "  <tbody>\n",
                            "    <tr>\n",
                            "      <th>0</th>\n",
                            "      <td>\u5c71\u4e1c\u7701</td>\n",
                            "      <td>339</td>\n",
                            "      <td>CN-SD</td>\n",
                            "      <td>Shandong Province</td>\n",
                            "      <td>\u5c71\u4e1c\u7701</td>\n",
                            "      <td>95793065</td>\n",
                            "      <td>282575.412979</td>\n",
                            "      <td>3.538878</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>1</th>\n",
                            "      <td>\u6d59\u6c5f\u7701</td>\n",
                            "      <td>277</td>\n",
                            "      <td>CN-ZJ</td>\n",
                            "      <td>Zhejiang Province</td>\n",
                            "      <td>\u6d59\u6c5f\u7701</td>\n",
                            "      <td>54426891</td>\n",
                            "      <td>196486.971119</td>\n",
                            "      <td>5.089396</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>2</th>\n",
                            "      <td>\u6c5f\u82cf\u7701</td>\n",
                            "      <td>274</td>\n",
                            "      <td>CN-JS</td>\n",
                            "      <td>Jiangsu Province</td>\n",
                            "      <td>\u6c5f\u82cf\u7701</td>\n",
                            "      <td>78659903</td>\n",
                            "      <td>287079.937956</td>\n",
                            "      <td>3.483350</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>3</th>\n",
                            "      <td>\u6cb3\u5357\u7701</td>\n",
                            "      <td>265</td>\n",
                            "      <td>CN-HA</td>\n",
                            "      <td>Henan Province</td>\n",
                            "      <td>\u6cb3\u5357\u7701</td>\n",
                            "      <td>94023567</td>\n",
                            "      <td>354805.913208</td>\n",
                            "      <td>2.818442</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>4</th>\n",
                            "      <td>\u5e7f\u4e1c\u7701</td>\n",
                            "      <td>252</td>\n",
                            "      <td>CN-GD</td>\n",
                            "      <td>Guangdong Province</td>\n",
                            "      <td>\u5e7f\u4e1c\u7701</td>\n",
                            "      <td>104303132</td>\n",
                            "      <td>413901.317460</td>\n",
                            "      <td>2.416035</td>\n",
                            "    </tr>\n",
                            "  </tbody>\n",
                            "</table>\n",
                            "</div>"
                        ],
                        "text/plain": [
                            "  index  museums    ISO            Province Chinese  Population  \\\n",
                            "0   \u5c71\u4e1c\u7701      339  CN-SD   Shandong Province     \u5c71\u4e1c\u7701    95793065   \n",
                            "1   \u6d59\u6c5f\u7701      277  CN-ZJ   Zhejiang Province     \u6d59\u6c5f\u7701    54426891   \n",
                            "2   \u6c5f\u82cf\u7701      274  CN-JS    Jiangsu Province     \u6c5f\u82cf\u7701    78659903   \n",
                            "3   \u6cb3\u5357\u7701      265  CN-HA      Henan Province     \u6cb3\u5357\u7701    94023567   \n",
                            "4   \u5e7f\u4e1c\u7701      252  CN-GD  Guangdong Province     \u5e7f\u4e1c\u7701   104303132   \n",
                            "\n",
                            "   people_per_museum  museums_per_1m  \n",
                            "0      282575.412979        3.538878  \n",
                            "1      196486.971119        5.089396  \n",
                            "2      287079.937956        3.483350  \n",
                            "3      354805.913208        2.818442  \n",
                            "4      413901.317460        2.416035  "
                        ]
                    },
                    "execution_count": 18,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "merged['people_per_museum'] = merged.Population / merged.museums\n",
                "merged['museums_per_1m'] = merged.museums / merged.Population * 1000000\n",
                "merged.head()"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "### Viewing our results\n",
                "\n",
                "We only looked at the first five above because **we're probably interested in the sorted version**."
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 110,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/html": [
                            "<div>\n",
                            "<style scoped>\n",
                            "    .dataframe tbody tr th:only-of-type {\n",
                            "        vertical-align: middle;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe tbody tr th {\n",
                            "        vertical-align: top;\n",
                            "    }\n",
                            "\n",
                            "    .dataframe thead th {\n",
                            "        text-align: right;\n",
                            "    }\n",
                            "</style>\n",
                            "<table border=\"1\" class=\"dataframe\">\n",
                            "  <thead>\n",
                            "    <tr style=\"text-align: right;\">\n",
                            "      <th></th>\n",
                            "      <th>index</th>\n",
                            "      <th>museums</th>\n",
                            "      <th>ISO</th>\n",
                            "      <th>Province</th>\n",
                            "      <th>Chinese</th>\n",
                            "      <th>Population</th>\n",
                            "      <th>people_per_museum</th>\n",
                            "      <th>museums_per_1m</th>\n",
                            "    </tr>\n",
                            "  </thead>\n",
                            "  <tbody>\n",
                            "    <tr>\n",
                            "      <th>11</th>\n",
                            "      <td>\u5317\u4eac\u5e02</td>\n",
                            "      <td>146</td>\n",
                            "      <td>CN-BJ</td>\n",
                            "      <td>Beijing Municipality</td>\n",
                            "      <td>\u5317\u4eac\u5e02</td>\n",
                            "      <td>19612368</td>\n",
                            "      <td>134331.287671</td>\n",
                            "      <td>7.444282</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>9</th>\n",
                            "      <td>\u7518\u8083\u7701</td>\n",
                            "      <td>183</td>\n",
                            "      <td>CN-GS</td>\n",
                            "      <td>Gansu Province</td>\n",
                            "      <td>\u7518\u8083\u7701</td>\n",
                            "      <td>25575254</td>\n",
                            "      <td>139755.486339</td>\n",
                            "      <td>7.155354</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>5</th>\n",
                            "      <td>\u9655\u897f\u7701</td>\n",
                            "      <td>236</td>\n",
                            "      <td>CN-SN</td>\n",
                            "      <td>Shaanxi Province</td>\n",
                            "      <td>\u9655\u897f\u7701</td>\n",
                            "      <td>37327378</td>\n",
                            "      <td>158166.855932</td>\n",
                            "      <td>6.322437</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>25</th>\n",
                            "      <td>\u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a</td>\n",
                            "      <td>39</td>\n",
                            "      <td>CN-NX</td>\n",
                            "      <td>Ningxia Hui Autonomous Region</td>\n",
                            "      <td>\u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a</td>\n",
                            "      <td>6301350</td>\n",
                            "      <td>161573.076923</td>\n",
                            "      <td>6.189150</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>26</th>\n",
                            "      <td>\u9752\u6d77\u7701</td>\n",
                            "      <td>32</td>\n",
                            "      <td>CN-QH</td>\n",
                            "      <td>Qinghai Province</td>\n",
                            "      <td>\u9752\u6d77\u7701</td>\n",
                            "      <td>5626722</td>\n",
                            "      <td>175835.062500</td>\n",
                            "      <td>5.687148</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>1</th>\n",
                            "      <td>\u6d59\u6c5f\u7701</td>\n",
                            "      <td>277</td>\n",
                            "      <td>CN-ZJ</td>\n",
                            "      <td>Zhejiang Province</td>\n",
                            "      <td>\u6d59\u6c5f\u7701</td>\n",
                            "      <td>54426891</td>\n",
                            "      <td>196486.971119</td>\n",
                            "      <td>5.089396</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>15</th>\n",
                            "      <td>\u4e0a\u6d77\u5e02</td>\n",
                            "      <td>116</td>\n",
                            "      <td>CN-SH</td>\n",
                            "      <td>Shanghai Municipality</td>\n",
                            "      <td>\u4e0a\u6d77\u5e02</td>\n",
                            "      <td>23019148</td>\n",
                            "      <td>198440.931034</td>\n",
                            "      <td>5.039283</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>8</th>\n",
                            "      <td>\u9ed1\u9f99\u6c5f\u7701</td>\n",
                            "      <td>193</td>\n",
                            "      <td>CN-HL</td>\n",
                            "      <td>Heilongjiang Province</td>\n",
                            "      <td>\u9ed1\u9f99\u6c5f\u7701</td>\n",
                            "      <td>38312224</td>\n",
                            "      <td>198508.932642</td>\n",
                            "      <td>5.037557</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>18</th>\n",
                            "      <td>\u65b0\u7586\u7ef4\u543e\u5c14\u81ea\u6cbb\u533a</td>\n",
                            "      <td>100</td>\n",
                            "      <td>CN-XJ</td>\n",
                            "      <td>Xinjiang Uyghur Autonomous Region</td>\n",
                            "      <td>\u65b0\u7586\u7ef4\u543e\u5c14\u81ea\u6cbb\u533a</td>\n",
                            "      <td>21813334</td>\n",
                            "      <td>218133.340000</td>\n",
                            "      <td>4.584352</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>24</th>\n",
                            "      <td>\u5929\u6d25\u5e02</td>\n",
                            "      <td>56</td>\n",
                            "      <td>CN-TJ</td>\n",
                            "      <td>Tianjin Municipality</td>\n",
                            "      <td>\u5929\u6d25\u5e02</td>\n",
                            "      <td>12938224</td>\n",
                            "      <td>231039.714286</td>\n",
                            "      <td>4.328260</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>0</th>\n",
                            "      <td>\u5c71\u4e1c\u7701</td>\n",
                            "      <td>339</td>\n",
                            "      <td>CN-SD</td>\n",
                            "      <td>Shandong Province</td>\n",
                            "      <td>\u5c71\u4e1c\u7701</td>\n",
                            "      <td>95793065</td>\n",
                            "      <td>282575.412979</td>\n",
                            "      <td>3.538878</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>2</th>\n",
                            "      <td>\u6c5f\u82cf\u7701</td>\n",
                            "      <td>274</td>\n",
                            "      <td>CN-JS</td>\n",
                            "      <td>Jiangsu Province</td>\n",
                            "      <td>\u6c5f\u82cf\u7701</td>\n",
                            "      <td>78659903</td>\n",
                            "      <td>287079.937956</td>\n",
                            "      <td>3.483350</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>7</th>\n",
                            "      <td>\u6e56\u5317\u7701</td>\n",
                            "      <td>197</td>\n",
                            "      <td>CN-HB</td>\n",
                            "      <td>Hubei Province</td>\n",
                            "      <td>\u6e56\u5317\u7701</td>\n",
                            "      <td>57237740</td>\n",
                            "      <td>290546.903553</td>\n",
                            "      <td>3.441785</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>14</th>\n",
                            "      <td>\u5c71\u897f\u7701</td>\n",
                            "      <td>121</td>\n",
                            "      <td>CN-SX</td>\n",
                            "      <td>Shanxi Province</td>\n",
                            "      <td>\u5c71\u897f\u7701</td>\n",
                            "      <td>35712111</td>\n",
                            "      <td>295141.413223</td>\n",
                            "      <td>3.388206</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>12</th>\n",
                            "      <td>\u6c5f\u897f\u7701</td>\n",
                            "      <td>137</td>\n",
                            "      <td>CN-JX</td>\n",
                            "      <td>Jiangxi Province</td>\n",
                            "      <td>\u6c5f\u897f\u7701</td>\n",
                            "      <td>44567475</td>\n",
                            "      <td>325310.036496</td>\n",
                            "      <td>3.073991</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>10</th>\n",
                            "      <td>\u5b89\u5fbd\u7701</td>\n",
                            "      <td>182</td>\n",
                            "      <td>CN-AH</td>\n",
                            "      <td>Anhui Province</td>\n",
                            "      <td>\u5b89\u5fbd\u7701</td>\n",
                            "      <td>59500510</td>\n",
                            "      <td>326925.879121</td>\n",
                            "      <td>3.058797</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>16</th>\n",
                            "      <td>\u798f\u5efa\u7701</td>\n",
                            "      <td>111</td>\n",
                            "      <td>CN-FJ</td>\n",
                            "      <td>Fujian Province[e]</td>\n",
                            "      <td>\u798f\u5efa\u7701</td>\n",
                            "      <td>36894216</td>\n",
                            "      <td>332380.324324</td>\n",
                            "      <td>3.008602</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>3</th>\n",
                            "      <td>\u6cb3\u5357\u7701</td>\n",
                            "      <td>265</td>\n",
                            "      <td>CN-HA</td>\n",
                            "      <td>Henan Province</td>\n",
                            "      <td>\u6cb3\u5357\u7701</td>\n",
                            "      <td>94023567</td>\n",
                            "      <td>354805.913208</td>\n",
                            "      <td>2.818442</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>6</th>\n",
                            "      <td>\u56db\u5ddd\u7701</td>\n",
                            "      <td>216</td>\n",
                            "      <td>CN-SC</td>\n",
                            "      <td>Sichuan Province</td>\n",
                            "      <td>\u56db\u5ddd\u7701</td>\n",
                            "      <td>80418200</td>\n",
                            "      <td>372306.481481</td>\n",
                            "      <td>2.685959</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>28</th>\n",
                            "      <td>\u897f\u85cf\u81ea\u6cbb\u533a</td>\n",
                            "      <td>8</td>\n",
                            "      <td>CN-XZ</td>\n",
                            "      <td>Tibet Autonomous Region</td>\n",
                            "      <td>\u897f\u85cf\u81ea\u6cbb\u533a</td>\n",
                            "      <td>3002166</td>\n",
                            "      <td>375270.750000</td>\n",
                            "      <td>2.664743</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>27</th>\n",
                            "      <td>\u6d77\u5357\u7701</td>\n",
                            "      <td>24</td>\n",
                            "      <td>CN-HI</td>\n",
                            "      <td>Hainan Province</td>\n",
                            "      <td>\u6d77\u5357\u7701</td>\n",
                            "      <td>9171300</td>\n",
                            "      <td>382137.500000</td>\n",
                            "      <td>2.616859</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>4</th>\n",
                            "      <td>\u5e7f\u4e1c\u7701</td>\n",
                            "      <td>252</td>\n",
                            "      <td>CN-GD</td>\n",
                            "      <td>Guangdong Province</td>\n",
                            "      <td>\u5e7f\u4e1c\u7701</td>\n",
                            "      <td>104303132</td>\n",
                            "      <td>413901.317460</td>\n",
                            "      <td>2.416035</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>23</th>\n",
                            "      <td>\u91cd\u5e86\u5e02</td>\n",
                            "      <td>69</td>\n",
                            "      <td>CN-CQ</td>\n",
                            "      <td>Chongqing Municipality</td>\n",
                            "      <td>\u91cd\u5e86\u5e02</td>\n",
                            "      <td>28846170</td>\n",
                            "      <td>418060.434783</td>\n",
                            "      <td>2.391999</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>22</th>\n",
                            "      <td>\u8d35\u5dde\u7701</td>\n",
                            "      <td>81</td>\n",
                            "      <td>CN-GZ</td>\n",
                            "      <td>Guizhou Province</td>\n",
                            "      <td>\u8d35\u5dde\u7701</td>\n",
                            "      <td>34746468</td>\n",
                            "      <td>428968.740741</td>\n",
                            "      <td>2.331172</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>17</th>\n",
                            "      <td>\u4e91\u5357\u7701</td>\n",
                            "      <td>101</td>\n",
                            "      <td>CN-YN</td>\n",
                            "      <td>Yunnan Province</td>\n",
                            "      <td>\u4e91\u5357\u7701</td>\n",
                            "      <td>45966239</td>\n",
                            "      <td>455111.277228</td>\n",
                            "      <td>2.197265</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>19</th>\n",
                            "      <td>\u5e7f\u897f\u58ee\u65cf\u81ea\u6cbb\u533a</td>\n",
                            "      <td>99</td>\n",
                            "      <td>CN-GX</td>\n",
                            "      <td>Guangxi Zhuang Autonomous Region</td>\n",
                            "      <td>\u5e7f\u897f\u58ee\u65cf\u81ea\u6cbb\u533a</td>\n",
                            "      <td>46026629</td>\n",
                            "      <td>464915.444444</td>\n",
                            "      <td>2.150929</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>21</th>\n",
                            "      <td>\u8fbd\u5b81\u7701</td>\n",
                            "      <td>93</td>\n",
                            "      <td>CN-LN</td>\n",
                            "      <td>Liaoning Province</td>\n",
                            "      <td>\u8fbd\u5b81\u7701</td>\n",
                            "      <td>43746323</td>\n",
                            "      <td>470390.569892</td>\n",
                            "      <td>2.125893</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>13</th>\n",
                            "      <td>\u6e56\u5357\u7701</td>\n",
                            "      <td>129</td>\n",
                            "      <td>CN-HN</td>\n",
                            "      <td>Hunan Province</td>\n",
                            "      <td>\u6e56\u5357\u7701</td>\n",
                            "      <td>65683722</td>\n",
                            "      <td>509176.139535</td>\n",
                            "      <td>1.963957</td>\n",
                            "    </tr>\n",
                            "    <tr>\n",
                            "      <th>20</th>\n",
                            "      <td>\u6cb3\u5317\u7701</td>\n",
                            "      <td>97</td>\n",
                            "      <td>CN-HE</td>\n",
                            "      <td>Hebei Province</td>\n",
                            "      <td>\u6cb3\u5317\u7701</td>\n",
                            "      <td>71854202</td>\n",
                            "      <td>740764.969072</td>\n",
                            "      <td>1.349956</td>\n",
                            "    </tr>\n",
                            "  </tbody>\n",
                            "</table>\n",
                            "</div>"
                        ],
                        "text/plain": [
                            "       index  museums    ISO                           Province   Chinese  \\\n",
                            "11       \u5317\u4eac\u5e02      146  CN-BJ               Beijing Municipality       \u5317\u4eac\u5e02   \n",
                            "9        \u7518\u8083\u7701      183  CN-GS                     Gansu Province       \u7518\u8083\u7701   \n",
                            "5        \u9655\u897f\u7701      236  CN-SN                   Shaanxi Province       \u9655\u897f\u7701   \n",
                            "25   \u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a       39  CN-NX      Ningxia Hui Autonomous Region   \u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a   \n",
                            "26       \u9752\u6d77\u7701       32  CN-QH                   Qinghai Province       \u9752\u6d77\u7701   \n",
                            "1        \u6d59\u6c5f\u7701      277  CN-ZJ                  Zhejiang Province       \u6d59\u6c5f\u7701   \n",
                            "15       \u4e0a\u6d77\u5e02      116  CN-SH              Shanghai Municipality       \u4e0a\u6d77\u5e02   \n",
                            "8       \u9ed1\u9f99\u6c5f\u7701      193  CN-HL              Heilongjiang Province      \u9ed1\u9f99\u6c5f\u7701   \n",
                            "18  \u65b0\u7586\u7ef4\u543e\u5c14\u81ea\u6cbb\u533a      100  CN-XJ  Xinjiang Uyghur Autonomous Region  \u65b0\u7586\u7ef4\u543e\u5c14\u81ea\u6cbb\u533a   \n",
                            "24       \u5929\u6d25\u5e02       56  CN-TJ               Tianjin Municipality       \u5929\u6d25\u5e02   \n",
                            "0        \u5c71\u4e1c\u7701      339  CN-SD                  Shandong Province       \u5c71\u4e1c\u7701   \n",
                            "2        \u6c5f\u82cf\u7701      274  CN-JS                   Jiangsu Province       \u6c5f\u82cf\u7701   \n",
                            "7        \u6e56\u5317\u7701      197  CN-HB                     Hubei Province       \u6e56\u5317\u7701   \n",
                            "14       \u5c71\u897f\u7701      121  CN-SX                    Shanxi Province       \u5c71\u897f\u7701   \n",
                            "12       \u6c5f\u897f\u7701      137  CN-JX                   Jiangxi Province       \u6c5f\u897f\u7701   \n",
                            "10       \u5b89\u5fbd\u7701      182  CN-AH                     Anhui Province       \u5b89\u5fbd\u7701   \n",
                            "16       \u798f\u5efa\u7701      111  CN-FJ                 Fujian Province[e]       \u798f\u5efa\u7701   \n",
                            "3        \u6cb3\u5357\u7701      265  CN-HA                     Henan Province       \u6cb3\u5357\u7701   \n",
                            "6        \u56db\u5ddd\u7701      216  CN-SC                   Sichuan Province       \u56db\u5ddd\u7701   \n",
                            "28     \u897f\u85cf\u81ea\u6cbb\u533a        8  CN-XZ            Tibet Autonomous Region     \u897f\u85cf\u81ea\u6cbb\u533a   \n",
                            "27       \u6d77\u5357\u7701       24  CN-HI                    Hainan Province       \u6d77\u5357\u7701   \n",
                            "4        \u5e7f\u4e1c\u7701      252  CN-GD                 Guangdong Province       \u5e7f\u4e1c\u7701   \n",
                            "23       \u91cd\u5e86\u5e02       69  CN-CQ             Chongqing Municipality       \u91cd\u5e86\u5e02   \n",
                            "22       \u8d35\u5dde\u7701       81  CN-GZ                   Guizhou Province       \u8d35\u5dde\u7701   \n",
                            "17       \u4e91\u5357\u7701      101  CN-YN                    Yunnan Province       \u4e91\u5357\u7701   \n",
                            "19   \u5e7f\u897f\u58ee\u65cf\u81ea\u6cbb\u533a       99  CN-GX   Guangxi Zhuang Autonomous Region   \u5e7f\u897f\u58ee\u65cf\u81ea\u6cbb\u533a   \n",
                            "21       \u8fbd\u5b81\u7701       93  CN-LN                  Liaoning Province       \u8fbd\u5b81\u7701   \n",
                            "13       \u6e56\u5357\u7701      129  CN-HN                     Hunan Province       \u6e56\u5357\u7701   \n",
                            "20       \u6cb3\u5317\u7701       97  CN-HE                     Hebei Province       \u6cb3\u5317\u7701   \n",
                            "\n",
                            "    Population  people_per_museum  museums_per_1m  \n",
                            "11    19612368      134331.287671        7.444282  \n",
                            "9     25575254      139755.486339        7.155354  \n",
                            "5     37327378      158166.855932        6.322437  \n",
                            "25     6301350      161573.076923        6.189150  \n",
                            "26     5626722      175835.062500        5.687148  \n",
                            "1     54426891      196486.971119        5.089396  \n",
                            "15    23019148      198440.931034        5.039283  \n",
                            "8     38312224      198508.932642        5.037557  \n",
                            "18    21813334      218133.340000        4.584352  \n",
                            "24    12938224      231039.714286        4.328260  \n",
                            "0     95793065      282575.412979        3.538878  \n",
                            "2     78659903      287079.937956        3.483350  \n",
                            "7     57237740      290546.903553        3.441785  \n",
                            "14    35712111      295141.413223        3.388206  \n",
                            "12    44567475      325310.036496        3.073991  \n",
                            "10    59500510      326925.879121        3.058797  \n",
                            "16    36894216      332380.324324        3.008602  \n",
                            "3     94023567      354805.913208        2.818442  \n",
                            "6     80418200      372306.481481        2.685959  \n",
                            "28     3002166      375270.750000        2.664743  \n",
                            "27     9171300      382137.500000        2.616859  \n",
                            "4    104303132      413901.317460        2.416035  \n",
                            "23    28846170      418060.434783        2.391999  \n",
                            "22    34746468      428968.740741        2.331172  \n",
                            "17    45966239      455111.277228        2.197265  \n",
                            "19    46026629      464915.444444        2.150929  \n",
                            "21    43746323      470390.569892        2.125893  \n",
                            "13    65683722      509176.139535        1.963957  \n",
                            "20    71854202      740764.969072        1.349956  "
                        ]
                    },
                    "execution_count": 110,
                    "metadata": {},
                    "output_type": "execute_result"
                }
            ],
            "source": [
                "merged.sort_values(by='museums_per_1m', ascending=False)"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 111,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/plain": [
                            "<matplotlib.axes._subplots.AxesSubplot at 0x11a0a1940>"
                        ]
                    },
                    "execution_count": 111,
                    "metadata": {},
                    "output_type": "execute_result"
                },
                {
                    "data": {
                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAI+CAYAAABJ+vbtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzde7ymc73/8dfbMDMGg2lMlBiEihxHJk1yClsqStsUiW2SjrTl1OHX5LDFRmSy0dhit6MUO9WQFEkRpoNDEcphpCjnnHn//vhed3O5reu+18ysNeteM+/n47Ee676v63t9r+tef9yf9b0O37dsExER0ZclhvoAIiKid6VIREREoxSJiIholCIRERGNUiQiIqJRikRERDRacqgPIPpv/Pjxnjhx4lAfRkQsYmbPnv032yv1tS5FYhiZOHEi119//VAfRkQsYiTd1bQup5siIqJRikRERDRKkYiIiEa5JtFPks4E/gN4M7Ck7ZnV8qWBV9aavhd4GrigtuzPtp9o629PYHSrn/648d5HmHjYD+bzE0TE4uDOL75tQPtLkei/EYD6WL4KMK1t2TJty74maQxwam3ZeECS6u0OsX3lQBxsRMRASJGYT5JWBg4HPmn7MEkzgfXbmt1he4/a+8m17ed5JBERsbClSHQgaQIwq3o7ETiqev1B4H3A522/UC17te3Jbdtf1Ud/vwHupowklqhGEisDu9r+9WB8joiI+ZUi0YHt+4FJAJK+Vlv1LdsntDUfKematmWj294vAVxre5dqJLGs7dMkHU85nRUR0VNSJObPIwCSVgAerUYTbwbeTvmbrgrcBdy2oDuStB+wH8CIsX0+EBkRMWhyC2wHklaQtLWkA4DN+mjyIWA3ScsAZwFr1dY9DZwr6cNd9rEEZRTRZ0Sg7TNsT7I9acSY5efrc0REzK8Uic42BLYH7gBuqZbdCHxK0vXAPpQRw28pp5H+eQrK9ixgC+Ddkt5aLX4K+EXbPg4H1q31HxHRM3K6qQPbPwV+CiBpt2rZbOA1rTbVcxJvsX2vpI8CBwP7Vm0fk/RO4Lnq/cPAcW37OHohfJSIiPkiu8+zHNGDJk2a5EzwFxEDTdJs25P6WpfTTRER0ShFIiIiGqVIREREoxSJiIholCIRERGNUiQiIqJRikRERDRKkYiIiEYpEhER0SjTcvSDpKnAqraPr95/DHiqFmG6EvC9qvnKlMn9Hqref972D9v627FqtyRwK/CQ7Zu6HUfiSyMWXwMdS9pfKRIdSNoUOB1YkZIXMbVatRJgSfsDBwH/AlxRrZtEmUr8NmAj4GOS/mZ7tqSxwMnAfcydRnwCcJyki2wfsxA+VkREv6VIdFBN5jep00iiGkW8qrbZK4G/ATdRCsBTwEOSRgDnVT+3AicCN1Bmmt0TOELSxkmni4hekiKxgGw/IOmHvPR00xur95+3/UdJK1JmgF2dMkvs6sDzwAnA2sA0208u1IOPiOgiRaL/Pt6aLhx4OVCf4nsy8H7KaaRpwJ3Adym52BtWbcYAmwNjgVcwNy97Jcr04lOr7V4kyXQRMZRSJPrvlLbTTXUbUi5Uf5pyemk08A7gDEoB+T/b9wLHStoK2ANYtrb9xKad2j6j6odRq6yded0jYqFKkRgYSwAvA9YBzqeMCNYFNm1ofzdwVe39uME8uIiI+ZUi0X8HtN3ddGRt3aaUkcShlLubAL4E7A882kdfawIja+9XGdhDjYgYGHmYrv9Otj2pSm/6z9ZCSdtR8q1Psf3P0YHtG4BzGvqaaXty6wf4PpBTSRHRcxJf2g+SBOAB+GNVt8KOsP3MvG6b+NKIGAyd4ktzuqkfBqI41Pp6nnLra0REz8vppoiIaJQiERERjVIkIiKiUYpEREQ0SpGIiIhGKRIREdEoRSIiIhrlOYlhJMl0EUNvqBLihkqKRAeSHqUEBC1r+7XVsitsb1VrsxlwSvW2NZf3SOBxSkIdwEG2f17bZr7iSyMiFrYUic5+RYkvfa2ka6plr6u93t32dZTpwJG0d7V8VeB625fUO0t8aUQMNykS3R0CbAOMB46hTNq3J/Ap23cBSDoceCcvHknsIWk68F3bxyS+NCKGoxSJ7i4Edga+AuwGPAd8FDhT0hK2XwDWAvYG3g7cRZkK/DfA7cBhVT9jSXxpRAwzKRLdfRH4LfBTSoLcGpRRxTjgPygBQlDuFHsH8N6qzUiq2NFK4ksjYthJkehsKeBnwMW2/13S8cBXgb1t79/W9iTgh7bnSPo5ZYRwZWtl4ksjYjhKkejsWdtvApC0GrAdcDiwl6RVbc+ptZ1u+xcAVfjQ5pJezdzTTXWJL42IYSFFoh8kvQ74FvAJ289KOo0yUti91uxUSU+1bToKmN1Hl4kvjYhhIU9cd1Gl0n0ZOMT2TwBsXww8VZ06aplajyStYknf09Bt4ksjYlhIfOlClvjSiOg1iS/tIYkvjYjhJKebIiKiUYpEREQ0SpGIiIhGKRIREdEoRSIiIhqlSERERKMUiYiIaNQzz0lIWglY3/blQ7Fv2w/0o91uwHfc9gSipBVtP1R7vzYw0vbNA3mciS+NWLgWt6jSvvRMkaDkNEyVNLme0CZpY+bGg0KZDG9Z5k7RDXCg7eslnQps0tD/Jban1/q9xvZkSUtQpsXYvNPBSdoB2Mv2t/tYvUcVSTrV9uPAEcBM4Oa2Pr4OrAc83bCbLefnSeyIiMEy5EVC0l+Be2qLNpX07ur1asA2tqdIeoCS6PYIc7Oj1wbWtP2P6v3rgCm2n2vbx0Sq/AZJrwLeBkyQtD/wBLBKLZIU4PO2f1i1nwPMAZYDnqnaTQB2tf1bANszJP0ZmCLpXkoRmy3pMuAD1TThLe8FPgP8u+0HJK0DvK9ewCIiesWQFwngOts797VC0nG8eAqLOW1N1gLUx3YXUb7IoQQG1bOjn6X8N38xpdh8kZIid4jtW/o4jDnVJHz1/r9GyZpA0maUVLpDKGFDMygRp2+kTAc+S9LmtlszxD5FyZ64QNIHqvYH9fX5IyKG2pAXiaYCUa07pPZ2JLBqW5PRDZuOa32xS6rnNmD7L5JmU6bnvp8SSzoN+JGkfwCzbe9R22S9tlEGlOI0o+rvOklrUYrNDcDPKcl1I4E/AOdSMrJn1Y5htqR9qmWzbN/Y9DeIiBhKQ1okqi/Xb9YWjQFeBvyptuxI2z8AbgP+0bZuSeCF+dj1GMpoYi9K0twBwI7AN1vBQTU3N4wk/sn2eZJuAF5Nya+uu8T2LF5qReBRYAtJy9l+rK8DTXxpRAylIS0Stu8A/jk9raRJwLT2aFBJo4DrgPcDy9RW3W/7iT66frD23/9v+1j/MuBMSr700sDngdcD+0j6HXCQ7Z9XbTuOJGoOBS6nnJ7arTrujYBPte9c0jbA8ZRM7MnA6cD7+jjOxJdGxJAa8tNN3UiaAFxEucPpT5Qv1bOB/YGz+trG9jva+pjY1mRdyghihO2jJc0ELgCeAd7WVni6jiSq4rYGpdg0nj6rrEG5+2ln238Gvi1pR0mr2b67y7YREQtVzxcJyoXpk4BXAhtQLkjvSxkBbCBpNHC17Tur9teUMLkXGUm5XoCkZSnXNh4ARkhakjKqOKZa/lng07Vt15fUnvQzkWokIWkcpWjtXa3bujbyGNPab82JlGJ0QdtxfktS69RaRERP6JkiIelgyhftzLZVoygXmX8P/K/tv1TtRwIbUq4ttG55ndpa39a3mJsp/T7KxeTZwHcoo5RZtr9fpcZ9T9I+tlujlJu6jCTWAU6tLmBPBC6vnW5aHzis7XB2rRW0efL6Vy7P9Xm4JyIWosUuvrQqGLSempb0Mtt/r61fChjbWiZpRJUm96I+2p+6XhgSXxoRgyHxpTXtX+71AlG9fxb4e+39S6JGh6JAREQMhUzwFxERjVIkIiKiUYpEREQ0SpGIiIhGKRIREdEoRSIiIhqlSAwgSVOq5ywiIhYJi91zEvNC0uHAO6u34yhPbbee6P6V7Y9IOp3y9PbZwHnAGZLqM9NeZPuGWp87AitT/va3Ag/Zvqk/x5P40oj+SezowMlIooMqRvWehtUHVm0+REnQ+wJwGnAlJWyo9XM/gKSxks4CtmRuUNIE4KtVMYqI6DkZSXQg6d+AH1ZvN6VkQFxWvd9L0m3AB4GvU6b+fhll5LEmJf9itO2Nqjmhzqt+bqVM8ncDZe6pPYEjJG1s+9cL5YNFRPRTikRnKzN3tHVv9bNybf35lAkCJzJ3FtkLKSFGnwIuqdqNBY4DVqfMYLs6JZb1BEpO9zTbTw7i54iImC8pEh3Y/g9JtwAPt61ay/ZKAJIupowejqbMRrsXpShMBtaSdCClmGxeLX8FcFTVz0rAwcBU4M5B/TAREfMhRaK754H2C8uvqL3emhIkNItyymln4G7KtYx9bJ9UtTtW0lbAHsCyte0ndtp54ksjYiilSHQ3Ali/bdnStdc7Ua5JHE3JqVgVeJDyt11O0gzbt9Ta3025oN0yrtPOE18aEUMpRaK7x/sIHbqi+r0GsAXwUeCW6k6nVptDgD+2FQgoF7VH1t6vMhgHHRExEFIk5oGkZYCLmXsL66PAQVXmRL1AXE65/rBNH93MtD291vYsICOEiOhJi10y3VCqboUdYfuZ+dk+yXQRMRiSTNcjqhHHS5LuIiJ6VZ64joiIRikSERHRKEUiIiIapUhERESjFImIiGiUIhEREY1SJCIiolGKRERENMrDdB1IGgecDhxOmQb8KGB/yqysawCjgc8Ak6qfI92PR9jnN8I08aWxKErUaG9LkehsKUqBmAqMBzYAplHmZNrF9nNVu1mSNgXOlPQ6ygR+qwG3A0/bfguUCFPgZOA+SnIdlAjT4yRdVMWlRkT0jBSJzl4GzKBEjL4ceCUlvvRzwFWSAM4Bbrd9ZGsjSasCx9ueWluWCNOIGHZSJDqw/TtJX6BkWz9Ema31zcDlwPerZt8BjpT0VtsHd+guEaYRMeykSHT3S+DfKUFCOwC/r6+0/RhwoKQNJC1l+9mGfsYwHxGmSaaLiKGUItHdusD2wF+A7wH/AxzRR7stq7bn99WJ7XuZjwjTJNNFxFBKkehuW+A/gZsp//2/GvhjvYGkUcDu9B0y1Jd5ijCNiBgqKRIdSFoCeAclx3oC5ZrEeynXETap2ohycftLwMmSNqltf0318ljbF9a6ToRpRAwLKRKdrQd8k3Ir7EWU//5t+4ZaMRgFXGr7AuCCfvabCNOIGBYSX7qQLUiEaeJLI2IwJL60hyTCNCKGk8zdFBERjVIkIiKiUYpEREQ0SpGIiIhGKRIREdEoRSIiIhqlSERERKM8JzHAJE0BftlhNtj5lmS6WJQkkW54SJGYB5KusL1VH8tPB2YDZ1NChc6Q9EKtyUW2b2jbZk9gtO2Zg3jIERELJEViANj+kKSjgC8Ap/HiGV4B7q/mejq1tmw8ZX7AabVlh9i+cnCPNiKi/1IkFpCktwAfBL4OHE+JPH0nZabX2yijhY0oeRSTa9tlJBERPS9FYt4sW5v+G+BI2z+Q9HJKcNAxwKrAhcABwKeAS1qNJU0AfkPJkxgPLFGNJFYGdk2+dUT0mhSJefN4X9ckgIspo4ejgeeAvSgxpZOBtSQdaPskyt1k19repRpJLGv7NEnHAyP62mHiSyNiKKVIDIytgTWAWZRTTjtTRgv3APtUBWK+JL40IoZSisTA2IlyTeJo4FzKKacHKX/f5STNsH1LXxtW6XcjSOhQRPSgFIkOJI2jjA5aVmu7JgHwUWCL6vcttj9U2/4Q4I+1AvEU8Iu27Q8H1gX6LCIREUMpRaID2w9SuyOpL5JeBhxUhQnVC8TllOsS29T6exg4rm0fRw/kMUdEDKTElw4jiS+NiMHQKb40czdFRESjFImIiGiUIhEREY1SJCIiolGKRERENEqRiIiIRikSERHRKEUiIiIaLbZPXEvaG/h/wAPAisBS1esVgC/bnlFruxEwDfgk8EXgJNv31NbvBEyiTB3e9elESTtSpgdfErgVeMj2Td22S3xpLEoSXzo8LLZFonIp5W9wCeVLewywVlNj289KmkGZCvzo2vJZkjYFzpT0OmAksBpwO/C07bcASBoLnAzcRwkkApgAHCfpItvHDPDni4hYIIt7kfgDZcbWdYBlKYXiF8BoSe8APl21WwYYL2kPyn/+SHo7sCvwCDDF9pGtTiWtChxve2pt2QhK/vV5VR8nAjcAGwJ7AkdI2jjBQxHRSxbnInEHsF31ehIwmlI0tgLOtv0j4CIASdsDWwJb2Z4i6V2U2V3vk7QcsJOkt9o+uMP+xlIm91sd2Lf6/TxwArA2MM32kwP8GSMiFsjiXCQeBF5dvR5HuSbxQvX+uba261Gm8t5K0puAf6OMIrD9GHCgpA0kLWX72Yb9jQE2pxSLVwBHVctXAg4GpgJ3LuBniogYUIttkbB9M9U04JJ2A1auX6xukbQUsAewLXAI5RTUHn0Ugy0puRDnN+zvXuBYSVtV/S1bWz2x6TgTXxoRQ2mxLRKSrgKWBp6tLduTkhL3ArALZbQxEzgNOIIyAtjM9tNVYbna9r2SRgG7U8uO6OJu4Kra+3FNDRNfGhFDabEtEsD+wGeBn1GKwv2Ui8g3U65LrE65yPw1YB9KdvXLgSslGVgOeIMkATOALwEnS9qktYNait2xti+s7XtNyh1QLasM8GeLiBgQi2WRkLQM5Yv9/bbvkfQl4HRgU+AC4PWUL/F32f47cFa16UV99DUauNT2BdW2/THT9vRaH2eRjOuI6EGLbTKdJPXnwbdB2O8IYITtZ+Z12yTTRcRg6JRMt1iOJACGokBU+32ecutrRETPy9xNERHRKEUiIiIapUhERESjFImIiGiUIhEREY1SJCIiolGKRERENBo2RULSO6vfK0jaUtK/VdN0L0ifr+7e6kXtd6um4WhfvmLb+7UlrbcgxxYR0QsG9WG6KqZziu3PVtNXvJGS4bAtJdntM5TZUL8CfKCPLj5v+4eSVgfeC3y32n4V4I/AoZT5l1r7mwmsX73dgBLq03KT7Wm1tmMoKXH9ylCUtAOwl+1v97F6j+qzTrX9OGUywJmUeaDqfXydMu340w272bLTk9iJL41ekvjRxcOgFIkqme37lInznpG0K3AupTicQPkSfQa4kTJ76pOAgMco8yfNBibZ/mHV5Ycpk+e9H9iNEtLzKDBC0iTbOwK0FYFf2Z7c4TA/Cbyqmg22ZSxwbj1GVNIcYA5lQr9nqkn7JgC72v5ttd8Zkv4MTJF0L6XwzZZ0GfCBaprwlvdSiuO/235A0jrA++pzOUVE9IpBKRK250g6EHgPcDYlUOcaSkzoU8CbKQXhbOAK4Mpq0zmUkcAcyiR7rVM5m1Gm134/JbhnJOU/9em272ztV9JKwPcoX9IrVV/oAp6z/aZauzcAbwc2AtYoh+w/VhP93dj2cea0FxtJX6OEFCFpM2BvStbEGpSJA8+hjJquAmZJ2tz2U9XmTwEnARdI+kDV/qCuf9SIiCEwWCOJTYAvAssD7wDupcxXNJ4y7fYLlC/5eyjF40Hgekpoz02U3OnWl/WawAqU0cdPKP/FXwWsBWwo6Xe296hOZ42g5EC8l1IovgqsBhwqaWVKHvXrKcVpF9svSNqakkT3R+CXQPv5nPVqU363rEX5csf2dZLWqj7vDcDPq885khKHei4lZ2JWa2PbsyXtUy2bZbu9MEVE9ITBGkn8CphcnaefZPuoKif6MeDPlC/l24B/AK+ifJGvy4vT2pC0Q3VNYjbwv5RTTKtSUuDaRxKvAfZsO5RPVb//VL0+j3KxfhfgjuoawRXVvs4Ajupj4r+bG0YS9c97nqQbKHGo+7Ztf4ntWbzUitXn2ULSclUMakRETxm0C9eSfko5TfSopJ0p/1E/WmuyMSXcZ3ngv4GdKKOJtwOXAG+lnNd/PbAjZSTyI0qBeclIwvZvgN9I+ka1rv5l/2fb72o7vsOAX9cWnQScL2l724/UlnccSdQcClxOOT21W7WPjZhbqOr73oYSYvQOSoTq6cD72ttVbRNfGhFDZjBvgT0e+AvlWsJ1wMuAW2vrrwLuAP4KPFEte5xSDB6nFAOqUzHbUk7dvI9yGmcK5bTQrrb3aNvvOGBb25NbP7TFg1ZfvDsAp7SW2f4dcCbltFbdzfW+qv5edEpK0iTK9Ygruv9ZWKPax86251R3Sz0habW+Gts+w/Yk25NGjFm+H91HRAycwbom8VrgAMrF3NdQCsEnKeftW/8xbwN8C5hIuSYxG5hEuTawIaW4PCNpIvAF4BuU/95/xItHEk8De9u+pXYIP5H0Qu1966IxVR71ZODttp9pe+zhTOArkkZUuQ8A60tqT/qZWB0LksZRrnHsXa3bujbyGMOLb8MFOJFyZ9cFbfv+lqQjbece14joGYN1TeL31XMFb60WXQf8j+0nal+M3wMuo9x2+lNKYWj3YdvHUjsVU20/xfZzHQ5hm+p5hdY2V9SO7Wng36rlH6EUs09U656nZF/X3dTlmsQ6wKnVBeyJwOW1003rA4e19bdr/Y6siIhetsjFl0oaXbvddCD6q48qWsuGJPo08aURMRg6xZcOm2k5+msgC0TV30uiRocq+jQiYmFb5IpEREQMnBSJiIholCIRERGNUiQiIqJRikRERDRKkYiIiEYpEhER0ShFIiIiGg1qfOmiQNJFwCuqt2MpCXX1pLltgXdSpjl/gjKtxyqU+Zn+Dpxn+6Q++t0TGG17Zn+PJfGlsbAkmjRaUiS6sP2O1mtJbwfeYPtztWVrAbdQsquXBE6jTG3+EGViw50k/ZKSa31qrevxZXNNqy07xPaVRET0iBSJebMc5cu+7h+UuNLPUSb7W7L6WYoyrfkIYEnbV1NmnwXmbyQREbGwpUh0IekgSlY3wMrA6CpECeAPtveS9CFKwJIp8ayt001PAT+2/bOqrwnAbyjToI8HlqhGEitTZoethyBFRAy5FIkubJ8AnAAg6XJKKNKhtmfX2twkaWPKtYqZwPaU003XUUYaLUsA19repRpJLGv7NEnHU0YcL5FkuogYSrm7qZ8kvYUSv/pF2iJJJa0A/CulIDwMPEm5iP0w8AgLIMl0ETGUMpLohyqe9EvA22zfJ2k/SQdVowyA91MuUrfet043vbHafp2+7nCq1i1BGUVk+vGI6DkpEh1IWhH4DPAW4F2276tWvR84R9J5wEGUpLstbT9WbfcpYI7t89q6fAr4Rduyw4F1KXdIRUT0lBSJzp6gZG8fVo9LrSJQd5e0EyXv+tOtAtGJ7YeB49qWHT2gRxwRMYAWufjSRVniSyNiMCxW8aURETFwUiQiIqJRikRERDRKkYiIiEYpEhER0ShFIiIiGqVIREREoxSJiIholCeuB5ikpW0/ORh9J5lu8ZWkuBgqKRLzQNLelAChPoOCJK0BHA+8u0s/O1IyJJYEbgUesn3TwB5tRMSCy+mmBSRpV0nXSLoGuAlYo/W+9rNK1XaspLOALQFVXUwAvirp8KH5BBERzTKS6ELS9sA1th9tW748sLntC4ELJW0AfBnYnRImdEdb+xHAedXPrcCJwA3AhsCewBGSNk46XUT0kowkunsfMK6P5StV61pOAg6mxJi+p4/2YykzwArYF1gdWI+SQbE2MC0FIiJ6TUYSA6AaVYwBTgFWAMZI2qVafX4VTjQG2JxSLF4BHFWtX4lSXKYCd/bRd+JLI2LIpEgMANuPVKeljgAuAzYClgKOs/2Pqs29wLGStgL2AJatdTGxQ99nAGcAjFpl7czrHhELVU43DYDqwvQPmJs69xxwDXCZpNX62ORu4Kraz/0L4zgjIuZVRhL9c6Gkp1tvJE0DRgG/lbQ+cAFwgO2LJe0MUL3+C3C+pDfVk+2ANYGRtferDP5HiIiYdykS/fMe27fXF0iaCEy3fZOkSbYflbQZ8Hng0wC2fy1p67YCATDT9vRaX2cBOZUUET0n8aVdSBoFPOMB+kNVt8KOsP3MvG6b+NKIGAyd4kszkujC9tPdW81Tf88Dzw9knxERgyUXriMiolGKRERENEqRiIiIRikSERHRKEUiIiIapUhERESjFImIiGiU5yS6kLQTMAk4stsDdZKusj1F0kaUqb8/1tBuvpLpEl+6+ElsaQy1FIkubM+StClwpqTXUeZcWg24HXiakhHxuar566qEujHABEmtJxh3sz1H0ljgZOA+4LZq3QTgOEkX2T5m4XyqiIj+SZHoQNIYYIrtI2vLVgWOtz211vQH1bpDgR8DfwXebPsbte2STBcRw06KRGcjgJ0kvdX2wU2NJH0OaJ0X+DTwe2CkpBtt31gtbyXTrc7cZLrneXEy3ZOD8zEiIuZPikQHth8DDpS0gaSlbD/b0O5ISXOAm4Cptg+S9BVgA0n32H6Y+Uymi4gYSikS/bMlsC5wfl8rJb0V2IJyreIn1eKVKSORs4F3zm8yXeJLI2Io5RbYLqqpwncH/q9hvYADgFOB7YCLq1UrU4rKnyWt17ZZv5PpbJ9he5LtSSPGLL8gHyUiYp5lJNFBVQBmAF8CTpa0SW3dNdXLY4HPAF8FPszc8KDlbD8p6aO2X2jrOsl0ETEspEh0Ngq41PYFlIjSl5D0GmAmsK/tGyVtI+kk4EqAPgoEJJkuIoaJJNMtZEmmi4hek2S6HpJkuogYTnLhOiIiGqVIREREoxSJiIholCIRERGNUiQiIqJRikRERDRKkYiIiEYpEhER0SgP03UhaX9gKdun1OJJpwP/SpnmezPbd1ZtzwT+A3gzsKTtmQ19Jr40OkpsafSKjCS6sH0a8FpJy7Wt+gTww7ZlIwA19SVpbDVP05a1dhOAr0o6fIAOOSJiwKRIdCBpBUnTgHOAH1FChK6hfMlvC6zRZfuVJZ0saYlafOnlwHeBacCmwEGU+NL1JW08eJ8mImLepUh09gjwOPAvticDN1S/rwT+BjwBTJB0vaTrgZ1r234Q+Abw7Wom2FZ8qZgbX7oeL44vTb51RPSUXJPowGWK3PMkrS/pF8BoSX8F/gtYilJk72/Nnijpa7XNv2X7hNr7xJdGxLCTItGFpKUpoUPP2N5C0lXAaOBpSqFo8ki1/QrAo4kvjQNt0BMAACAASURBVIjhKEWiu+2Bq4GdqusR61LiRg+gnC5aQdLWwAbAZn1s/yHgT8C3asta8aUt45p2bvsM4AyAUausnfCPiFioUiQ6kLQkcATwXmBL21tJeiVwse17qnjT5SmF5OfALdWmNwL/W90+uyzwprauE18aEcNCikRnKwI/sf07SftUy6YBMyQdSbnG8EHbPwWQtBuA7dnAazr0m/jSiBgWEl86jySNBJ71fP7hEl8aEb0m8aUDaH6+3Nu2T3xpRAwbeU4iIiIapUhERESjFImIiGiUIhEREY1SJCIiolGKRERENEqRiIiIRikSERHRKA/TzQNJe9MWSyppM+CU6m1rmtaRlByKR6r3B9n+eW2bxJdGnxJbGr0mRWIB2b4OmAz/LCIAqwLX276k3lbSWOBk4D7gtmrxBOA4SRfZPmahHHRERD+lSHQhaXvgGtuPti1fHtjc9qVVPvU7efFIYg9J04Hv2j6mFl96HmX0cCJwA7AhJb70CEkbJ50uInpJikR37wP+ADzatnylat2lwFrA3sDbgbsoU4H/BrgdOKxq34ovXZ258aXP8+L40icH8XNERMyzXLgeOEsA7wB+QZn2eyRVolylFV+6DnPjS79BKTbTgZf31amk/VoZ2s8/8UhfTSIiBk1GEgPnJOCHtudI+jllhHBla+X8xpcmmS4ihlK/i4SkcZTTKLfZzr+0LzXd9i8AbF8FbC7p1cw93VTX7/jSiIih1K8iIen9wEeAZYBvSFra9ucH9ch6y4WSnm69kTQNGAX8ttbmVElPtW03CpjdR3+JL42IYaG/I4kPA1OAy4BjgeuBxalIvMf27fUFkiZSriW0TLV9S1ubppFE4ksjYljoV3yppKtsT5H0E9vbSLrS9pYL4fiGnKRRwDPzG1faR3+JL42InjIQ8aU/k/RNYFVJpwG/HLCj63G2n+7eap76S3xpRAwb/SoStg+XtAPweuD3tjM3RETEYqBfz0lIeiXwZ+AHwC6SNh3Uo4qIiJ7Q34fpzqXcpnk08BPK/EMREbGI62+RWIJyX/+yts8F5vmia0REDD/zMi3HF4HLJW0LjBik44mIiB7S3yKxN2XiuhOB8cA+g3VAERHRO/pbJO6q2n4BeAD4x6AdUURE9Iz+PidxJvArYEvgCuAcYIdBOqZokGS64SlpczGc9bdIrG57L0nvsH2JpM8N6lH1EEk7AZOAI/t66nphxpdGRCxs/S0SS0p6OYCk5YAXBu+QeovtWdVzIWdKeh2lAKxGCRR62vZbSHxpRCyi+lskPgP8lBKWczVwwKAdUQ+RNAaYYvvI2rJVgeNtT60tS3xpRCyS+jstxxXAaySNt/23wT2knjIC2EnSW20f3KFd4ksjYpHU3zyJPYFDgWUkAWB7zUE8rp5g+zHgQEkbSFrK9rMdmrfiS98LrEFzfOlY5saXQhl9HAxMBe5s71TSfq1+RoxdqX11RMSg6u/ppoOBtwH3DuKx9LItgXWB8zu0SXxpRCxy+lsk5ti+e1CPpEdVeRK7A9t0aZr40ohY5PS3SDwmaRYlrtMAtj89aEfVI1TOrc0AvgScLGmT2rprqpfHVr8TXxoRi5z+FomLB/Uoetco4FLbFwAXNDWS9DYSXxoRi6CO8aWSJtm+XtL27etsXzqoR7aISnxpRPSaBYkv3Ra4nnLHTp2BFIn5kPjSiBhOOhYJ28dWv/eRNJ5yG2dERCwm+vucxOnAVsBfAVFGElsO3mFFREQv6O+F6w1srzuoRxIRET2nv3kS90haZlCPJCIiek7HkYSkqymnliYAd0q6nbnPSWwx+IcXERFDqdtIYk/gB8DOlEyFs4FbquUREbGI61Yk9qdkI/zJ9l3Ad4CngY8M9oEtCiT193ReRERP6nbheortN7be2H5A0kcomRKLHUnTAGzPbFu+JvAfwHjg+8BTlJHXBMrMsO39zFcyXeJLh59El8Zw161IvCTfwLYlLTbJdJJ+TRk91ZdNq14uTXnQ8AzgeOCTwCcoyX1XAxtLuhP4jO3/TTJdRAw33U6HPCzpDfUFVabz0w3tF0W32p4MbEH5r38725OrZTfa/h2wD2WOpt2BPwBvBH5MOT33m6pAtJLpLge+C0wDNgUOolzjWV/Sxgv3o0VEdNZtJHEIMEvStZTprSdS8pzfM8jH1RMkjQMmVjO+LkMJC1q3FbxUtXkTcA5wOmWqku9SisFtwMuZW4iTTBcRw07HkYTt24FNgO8BDwH/B6xnu6/prxc5th+sRgzbU0ZPr6re/xb4ePX6WUqRuJ8SYfpe4CLgFMqppLuq7lrJdOswN5nuG5RkuumUghIR0VO6PnFt+3HgmwvhWHrZccDDwGRJTwOr2L4OwPa1kl5HmabkUGA08C+UJL9bgWurdvOVTJf40ogYSv2dlmNx90nKjLinUf7jv0jS2rZvq7W5EngAeC1wD/A74KOU01T/09Zfv5PpEl8aEUMpRaKDaiqSPYH1KReuzwH+E9iMklR3u+1PVM3fD/wFeJByp9MvgY8DH5f0Wtu/r3WdZLqIGBZSJDqw/Q9JjwLnAgdWWRBQRgE7SVqr1vxySnE4jXKd4VLb35T0V0o+dr1IJJkuIoaFjsl00T+SlgSw/Vw/2iaZLiJ6yoIk00U/9Kc41NommS4iho3MLRQREY1SJCIiolGKRERENEqRiIiIRikSERHRKEUiIiIapUhERESjFImIiGiUh+n6QdIVwInAp/tYfSElYAjgDmAN4DWUKcOPBe61/ae2/hJfuhhIdGksCjKS6EDSZlXg0CbAG4AZlKeln6LkS1xW/ewGnEXJtd60+nk5JZzpgFp/Y6t5mrYEWslFE4CvSjp8YXymiIh5kZFEB1VmxGRJnwAeAcYDJwE/o0zvfYjt2ZLuphSRiZTUudGUYKHRwEqS/hu4mZJYdx5l9HAicAOwIWWm2SMkbWz71wvvE0ZEdJYi0YWkMZRTR2+hZEp8AHh3tfqn1e//BzxJmf31W5TTTZtTMiZus32DpBVJfGlEDDMpEt19BdgAOJAy5fcKwAjKF/yaks6kXHtYkjI6aI0gVqHkTjxR9dOKLx3L3PhSKIXlYGAqcGf7zpNMFxFDKUWiA0nvpqTIzaYUhfHAx4DTgQ9RisMSlIzqn1ACh/4bWBXYlZJzjaQV5ze+NMl0ETGUcuG6swtsfx54wfYJ1bLXAEtXv5erll0LfBn4NbAd8EbgldXr7Sijj7pWfGnr5/5B/AwREfMtI4kO/NJEphWBaZQ7l6ZRriu8gTJquAx4J6WATKSMJh4HlgIuBuq3wSa+NCKGhRSJefMn29u13kj6P8qzEfva/vM89JP40ogYFhJfupAlvjQiek3iS3tI4ksjYjjJheuIiGiUIhEREY1SJCIiolGKRERENEqRiIiIRikSERHRKEUiIiIapUh0IWnpoT6GiIihkofpuvu4pDWAv1Mm62sZW/2cwtxcCYAdgFHARbVld9h+oPUm8aWLjkSUxqIuRaIL28dJOgS4zPZnW8slbQdMoWRcb1/bZE3K37X+iPvDwAOSxgInA/cBt1XrJgDHSbrI9jGD90kiIuZdikQHkt4AHETJjli+yrsG+ANwDoDtP0j6MGV6cCixpksAa1Xvr7U9o5qzKfGlETGs5JpEB7avBc4EPk2ZAvw3tidTRgt1awM7A/cAO1FGEfdSTk+tU7UZS4kvFXPjS9fjxfGlKRAR0VMykujC9qWSRlMiSTtZHZhDKQQjgYeAdWvrE18aEcNOikT/fBw4ANhV0kaUIKF2L1BiTkdRisQVwHOtlYkvjYjhKEWiC0lvAX5HKQIX2t5f0lV9NN2eklA3nnJKaX3g+w3dtuJLW8YN3BFHRAycFIkOqtNMXwD2qEYC+wPYnlLd3VR3uu1jJe0JjLY9U9JylDug2iW+NCKGhVy47mwNYEZVIP5J0gzgVKDx2QZJ2wLXUu6EajfT9uTWD2XEkVNJEdFzEl+6kCW+NCJ6TeJLe0jiSyNiOMnppoiIaJQiERERjVIkIiKiUYpEREQ0SpGIiIhGKRIREdEoRSIiIhrlOYlhJMl0QyspdLE4SpHoQNLpwKYNq2+3PbVq99/AF2zfJemqam6nicB023u39Tlf0aUREUMhRaKzdYEdgY8B11NmeMX21yTVv9hHUmZ+bZTo0ogYjnJNon9GAM/O78a16NLLge8C0ygjlIMo0aXrS9p4AI4zImJAZSTRPysDf6Ga0ltSx1FDH1rRpaszN7r0eV4cXfrkgB1tRMQAyUiiu1HAhsCNlOm8RwGz2tqM6NJHK7p0HeZGl36DEl06HXh504aS9pN0vaTrn3/ikfk5/oiI+ZaRRHenASfafkHStcBZwP9RThO1LAM81dTB/EaXVtsmvjQihkyKRHeH2b4ZwPbvgckAVQIdkkYBrwMe6Gd/iS6NiGEjRaK7syU919cKSSOB/wZ+UuVEQLk43UmiSyNi2EiR6G5H239rX1jdArse5Ut/x9Zy25/r0t9M29Nr/ZxFoksjokclvrQDSSO7xYxKGlEbRXTrb76jSyHxpRExOBJfOp/682Xe3wJRa5vo0ogYNnILbERENEqRiIiIRikSERHRKEUiIiIapUhERESjFImIiGiUIhEREY3ynMQ8kLQb8B23PYEoaUXbD9Xerw2MbM35NFASXzp0El0ai6tFqkhI2gw4pXq7UvV7JPA40Jpn+1BgReCVwC7AV6rlRwGfrV5favuJtr53APay/e0+dr1HFUs61fbjwBHATODmtj6+TpnK4+mGj7Dl/D6NHRExGBapImH7OubO0rp3tXhV4Hrbl1TLV6cUkKWB0VSRpJRTb+8B7qc2SZ+kOcAcYDngGUnXUGJHd7X922q/MyT9GZgi6V7KVOCzJV0GfKCaKrzlvcBngH+3/YCkdYD31edziojoFYtUkQCQdDjwTl48kthD0nTgu7aPkfS/wCXAHcD6VbtbKH+P54AVmDvymGN7cts+vgYsVb3eDNgbOARYA5gBnAO8kTIl+CxJm9tu5U08BZwEXCDpA1X7gwbo40dEDKhFrkgAa1G+tN8O3EWZpfU3wO3AYVWb11IiSS+jjDxeAXwHuBPY3vZdtf7Wq0YP7fuYAWX0Imkt4IvADcDPKaOTkcAfgHOBbail2dmeLWmfatks2zcOwOeOiBhwi2KRgHLq6B2UUztrUL6w9wOQtColZ/o9VdtXV+uXBzajFJa6mxtGEv9k+zxJN1R97du2/SW22+NOoVwXeRTYQtJyth/r64NI2q917CPGrtRXk4iIQbOo3gJ7EvBD23Mo/9l/BlC1bhXgy5QvdICrge8CD1JGHz9t62s9SdfUf4C+bnU5lJIyN8f25Kqw7F/bzz9J2gY4HXgXcHz1uk+2z7A9yfakEWOW78dHj4gYOItqkZhu+ygA21fZ3py5X8S/An4PXEu57vAcsAnltJCAX0lautbXza0v/dqX/4vuQ5U0iTJiuaIfx7YG5e6nnW3Pqe6WekLSavP5WSMiBs2ierrpVElPtS0bBcwG/g24knI6aibwr5Q7mi4DngSmA99gbiFYX1J70s9EqmsSksYBZ1OugwBsXbuGMYZynaLuROAZyoXr+vJvSTrSdh6EiIiesagWiam2b6kvkPRqyoXrq4FnKf/RX0kpHMsBHwcOptz19Inapjd1uSaxDnBqdQF7InC57d2qdusz92J5y66275yfD/X6Vy7P9XmoKyIWosSXdtFXPKkktT91vTAkvjQiBkOn+NJF9ZrEgOkrnnQoCkRExFBIkYiIiEYpEhER0ShFIiIiGqVIREREoxSJiIholCIRERGNUiTmgaQpkpYa6uOIiFhYFtUnrgeMpNMpT2WfDZwHnCHphVqTKynTbLTsQJkC5KLasjtsP1Drc0fKVOVLArcCD9m+qduxJL50aCS6NBZnKRJd2P6QpKOALwCnUYKE2tWfVFyT8netL3sYeEDSWOBk4D7gtmrdBOA4SRfZPmagjz8iYkGkSHQg6S3AB4GvU6b0fhkl9W5Nypf8aNsbSdqVkkQHZbrwJSjBRADXVvGmIygjkfMoo4cTKZP/bQjsCRwhaWPbv14oHy4ioh9yTaID2z+lnDaaCBxDyanYg/JFvzVzI07XBnYG7gF2oowi7gW2o0wACDAWOI4yHfm+wOrAesAJ1fbTUiAiotdkJNHdxZTRw9GU7Im9KF/4k4G1JB1YtVsdmEMpBCOBh4B1a/2MATavtn0FcFS1fCXK7LNTKfGpL5JkuogYSikS3W1NmVZ8FuWU087A3ZRRwz62T5K0HfAC5QL3KEqRuIJSVACwfS9wrKStKKORZWv7mNi0c9tnAGcAjFpl7UwsGBELVYpEdztRrkkcTUmvW5USdboksJykGVW77YFdgfGUU0rrA99v6PNuXnwBfNzAH3ZExIJLkehA0hrAFsBHgVtsf6i27hDgj7ZvqRLmTrd9rKQ9KRe0Z0paDpjSR9drUkYbLasM2oeIiFgAKRKdPQocVGVK1AvE5ZRrC9s0bShpW0rE6Y/6WD3T9vRa27OAnEqKiJ6TZLqFrLoVdoTtZ7o2bpNkuogYDJ2S6TKSWMiqUclL0u4iInpRnpOIiIhGKRIREdEoRSIiIhqlSERERKMUiYiIaJQiERERjVIkIiKiUYrEAJO09FAfQ0TEQMnDdPNI0hW2t2pYtwZlpth3d+kj8aU9JPGkEc1SJLqQNIEym2sr13pdSdfUmpwMHFC9fj1wa9t6gF1t35f40ogYblIkuhsJ/M723h3anCtpA+DLwO7AsrbvqDdIfGlEDEe5JtE//ZkF8SRKwtxmwHv6WJ/40ogYdjKS6G4J4NlODSQtT4knPQVYARgjaZdq9fm2TyDxpRExDKVIdLci8HCnBrYfkbQ9cARwGbARsBRwnO1/VG0SXxoRw05ON3U3GbiuUwNJqwA/AH5RLXoOuAa4TNJqfWzSii9t/dw/YEcbETGAMpLoQNI4YG9ghw5t1gcuAA6wfbGknQGq138Bzpf0JtvP1TZLfGlEDAspEp29CviU7UebGti+SdIk249K2gz4PPDpat2vJW3dViAg8aURMUwkvnQhS3xpRPSaxJf2kMSXRsRwkgvXERHRKEUiIiIapUhERESjFImIiGiUIhEREY1SJCIiolGKRERENMpzEv0kSZSZXF9GmeZ7feBm21e2tVsduG9+HpbrJsl0gyPJdBHNUiS6kLQH8GHKpH3LUvIgLgRuBv7QxybrAf8l6W3u8Di7pD2B0bZnDvxRR0QMjBSJ7val/J2WpIwkxgI7Vz9Iej8lXe5zwJPVNisAV5fBBwDbAesAp9b6HV8217TaskPaRyYREUMpRaIL29tIOoRy/WZN4NXApdXqc23fJelNwJdsfw1A0jdt797W1a8o045TtclIIiJ6XopE/+xFSZIbQxkB3AnsBlwP3FW12UTS/tXr10m6prb9frZvkDQB+A0lT2I8sEQ1klgZ2DXxpRHRa1Ik+mcV4GPA8tXPBGA14LRq/SjgWtufkLQ0JYDoBdvbtfWzRNVul2oksazt0yQdD4zoa8eJL42IoZRbYPvnBkrS3O+Ae6vXvwIer9avBDxUvd4d+CFwraS3L+iObZ9he5LtSSPGLL+g3UVEzJOMJLqQtAmwNDCFctF6bPUa5ibKbQH8j6R1gI8DW1JGF7Oqedr/3KH/JSijiAR7RETPSZHowvY/LzhL2grYzvZnW+slTabcFrsV8AlgT9v/AP4h6aPAtyXtZft24Cnm5mC3HA6sC9wyyB8lImKepUh0UBWAk2qLxgJjJdWvNcwEpgFrAVtWBQIA27Ml7UspDth+GDiuvg/bRw/S4UdELLDElw4jiS+NiMHQKb40F64jIqJRikRERDRKkYiIiEYpEhER0ShFIiIiGqVIREREoxSJiIholCIRERGN8sR1F5KWpEy5ASWA6GeURLpHbV9bazcFeIvtoyVdQQkaWhWYbnvvtj53pEwPviRwK/CQ7Zu6HUviSwdOIksj+icjie6WBU6mZFqvBKxdvT65rd2SlIkAG0kaK+ksygSArdi6CcBXJR0+kAcdETEQMpLo7jngMWAq8CrKCOBx4PetBtVEfksBu0q6tVp8EXBorc0I4Lzq51bgRMoU5BsCewJHSNo4wUMR0UsykuhA0raUL/W/VT+/paTS/Q1YSdL3q7S5dwG3UXIk3ldt/k1g71p3YymT+4ly2mp1YD3gBMroZFoKRET0mhSJDmz/2PbOwJsocaPjqt/jq/U7U3KvrwGeBB4GWrPAXgy8ttbdGGBzYB3gFZQ41G9QTmFNB14+uJ8mImLepUj0z822JwPnA5+qXgNg+xrbnwHWoIww/rVafj/wkVq7e20fC/yIck1jau1nYtOOJe0n6XpJ1z//xCMD/sEiIjpJkZg3mwMPtC+srjfsB/zM9gv96Odu4Kraz/1NDRNfGhFDKReu++fHks6k3Pq6q6Q3Az+GfxaI04C/276xan9vl/7WBEbW3q/S1DAiYihlJNGBpDdK+gnlWsQZtj9r+4vAu4GXS9oHGE258Lxvazvbe3Tpeqbtya0f4Psk4zoielCS6QaAJLmff8hq5DHC9jPzup8k00XEYOiUTJfTTQOgvwWiavs88PwgHk5ExIDJ6aaIiGiUIhEREY1SJCIiolGKRERENEqRiIiIRikSERHRKEUiIiIapUhERESjPEzXhaQ3Aqc0rD4DuAB4dW3ZDsAoSuhQyx22/zkxYOJLF77ElUbMnxSJLmxfDfT5uDqApHXa1q9J+bvWlz0MPCBpLCX29D5KSBGU+NLjJF1k+5iBPPaIiAWVIrGAbP9B0oeBN1aLxlFO461Vvb/W9ozEl0bEcJQi0YGkTYHTq7cjgWWBB9uaTafMArsz8F+UL/y/AWcCHwC+XbVrxZeuztz40ud5cXzpk4P0USIi5kuKRAe2Z1OdNpJ0GPCg7TMkLWO7FVOKpP0pX/pzKIVgJPAQsG6tu1Z86VjmxpdCiS89mJJQd2f7MUjajxJoxIixKw3gp4uI6C5Foh8kjaFkSLy5WnS8pKttn1Nr9gIwm3LReiRwBfBca6Xte4FjJW0F7EEZlbRMbNq37TMoF8gZtcramdc9IhaqFIn+OQw4CVhS0qsoSXRnS3rQ9verNtsDuwLjAVFyrL/fV2fMjS9tGTcoRx0RsYBSJDqQtATwE8odSH8D/pWScf0AcA7wOUlXVs1Pt32spD2B0bZnSloOmNJH14kvjYhhIUWiA9svAFs1rZf0cxpiRyVtC8wAftTH6pm2p9fantXUT0TEUEp86UKW+NKI6DWJL+0hiS+NiOEkczdFRESjFImIiGiUIhEREY1SJCIiolGKRERENEqRiIiIRikSERHRKEUCkNSv6VUl7SZJfSxfse392pLWG6jj+//t3XuQVOWZx/HvIxdHEcLFqKxOAEFBMGBUYIQZBbEUFVdN0CJeoTK1ga0YzKpogilZjUTHNRDiemPQEbNZtNCNl1JUVgZhjEjIiqIiBDUy5qIhQRx1uPnsH+/bk2bo0zMMl9Ojv09VF3NOv33O003Vefp939PvIyKSloL7MZ2ZVbv7iKztwfyjfGjmYt4eqAM+ittXuXtNbD8eqHf3eXF7gbuPznGel9y9JK7P9CRhGe98cZ0BXObu83M8fXEsSTrO3euAG4FK4PVGx/glMADYnHCak/P9ElvlS3edypaK7J7Uk4SZHUK4SH8ed/U1s5eympzv7iWx7fi47wjgt+6+IOs4QwkL8TV1vmLgbOCQWAfiU6B7o3Pe4O7PxPa1hDoRHYEtsd0hMa6VALHy3B+BUjN7n7AM+AozWwhcHpcJz/g2MBX4N3f/MJY/vSh7LScRkUKRepIg9ArecPfxSQ3M7IfAuezYk7jYzKYBj8Xa0G8QKsPNAerznG8r4dv804SeyC3AK8AUd1+do31tJkllxVMFtIt/DwbGA1OAXoRF/eYSypkuBZ4ys6HunompnrDs+KNmdnlsf1WeeEVEUlMISQKaXgG1N+FCfA7wB8JS268AvyfUesDdPzazXwD9gIFmdmV8bb+sXsL57v4nM1tBWJ77A+A/gXLgOTP7BFjh7hdnnXtAo15GJp474nmXm1lvQrJ5Fagh1JRoD6wB/hs4FXiq4c26rzCzCXHfU+7+WhPvX0QkFYWQJPYjfLtvTrt/JgzX9CJchP8lu4G7329mtwGL3P27kDgncSChN3EZMBuYDIwGHnL3Fxu1fT2hJ5F93nlm9irQh1C/OtsCd3+KnXUBNgHDzKyju3+c602rfKmIpKkQ7m7qAmxsRruZwDPuXkv4tj6VUAEOADPrb2ZPAwObcaxuhGGp94ADgBsIvYkFZvaSmQ3Pajsg7mt4EOY0GruWUGGu1t1LYmKZSEgcOzCzU4F7gG8C/xH/zsnd73X3E939xDYHfqUZb01EZM8phCRRAixvRrtp7v4TAHdf6u5D2fHiWgdMIgzvNKUv8CahrsPNhPmOVwg1qk/N3CkVvZ656Gdd/He4xcjMTiT0bqqbce5ehLufxrh7bbxb6lMz+1ozXisisk+lOtxkZl0Jcw1nNKP5nWbWeEJ6f8KFHXd/Lx4zc+znCcNKXeK3/9+5+7+a2UGEu6M+BNqYWVtCr+Kncf/1wI+yznGsmTWu9NOTOCcR38MD8X0AjMyawziQME+R7WfAFsLEdfb+h83sJnfXPa4iUjDSnpMoBq52903NaDuu8d1HZtaHOHHdmLufmnCciwi9jRXAI8DjhMnjJ2PVuCfMbIK73x/br2piTuJo4M44gd2TMB8yNrY7Nkd857v7u/neqIhIofjSlS/N/GLa4xs3s27uviHr+XZAp8w+M2sTq8ntcAxP4YNT+VIR2RtUvjRL44t7doKI21uBDVnbO5UaTSNBiIikoRAmrkVEpEApSYiISCIlCRERSaQkISIiiZQkREQkkZKEiIgkUpIQEZFEX7rfSewqMzvA3T9rlSc5LgAADURJREFUZtuvAse6+6K9EYsq0+0aVaUT2X1KEnnEX2c/ZGZzgcHA8EZNbnb3p7O2twHjzKwkFkJKOu5o4DDC5/8W8Hd3X7VnoxcR2X1KEnm4u5vZRYT1nUZn6k/HFVt/Dbwct/8CrM966Qlm9q3499cIK8uuMrNOwM+BPwFr4/OHABVm9ni+xCIikgYliSa4e52ZjWq0FMeDwMSsJT2Wu/uYXK83swpge1w8cF58vEVYDfZVYBBwCXCjmX3D3f9vb70XEZFdpYnrPMzsm2a2DJiVta8t8LG7v5zZl5Qg4nNT3P1NoBNQQSiU9B2gB6E63u3AUUC5EoSIFBr1JPJw90fN7HfAtKQ2sb71Q1m7DiRUvnsna99NhKJGQwnJ4p+An8TnvgpcA4wD3s1xfJUvFZHUKEnsJndfBzQssRur1JW7+8QczW81sxHAxcBBWft75jn+vcC9APt3P0qrz4rIPqUk0bS+wJA4zNQeeBZ4Kf9LmvQesDRru+tuHk9EZK9QksjDzA4AfgxcC8wEfuDupXvg0EcSEk5G9z1wTBGRPU5JIr/Tgbvd/YlYy/p3ZvZJ1vMGTHX3hQBmdg2h1nVlE8etdPdpDQcxux/QUJKIFJwvXfnStMVbYdtkfnOxK1S+VET2BpUvLSCxHOpOJVFFRAqRfichIiKJlCRERCSRkoSIiCRSkhARkURKEiIikkhJQkREEilJiIhIIv1OoglmNhFo5+6/MLOl7l5qZtOACwkruJ7Jjp/jGcD+hEJFGevc/cOsY7aoMp3Kl+amMqUie496Ek1w97uBY8ysY6Onvg88A2wirAKbeRxJqBWRva8bgJl1iktwnExY0gNCZbrZZvbDvfxWRER2mXoSeZhZZ2AsMBd4DuhvZi8BnxJ6C72ALUBv4KT4sq6E5Ns7br/s7neoMp2ItEbqSeT3EVAHnOnuJcCr8d8XgL8SkgWEynJjCHWuzyL0Ht4HTgOOjm1UmU5EWh31JPKIda3nmdmxZvYiUGRmfwHuAtqxY5LtAdQSEkF74O+EWhQZB9KCynQiImlSkmhCrCkxA9ji7sPMbClQBGwmJIqMz4EVhGGo9kA1sC3zpLu/Twsq06l8qYikSUmiaacDvwHOivMRfYEPgMmE4aLsducDBxOGlI4Fnkw4ZrMr06l8qYikSUkij1iy9Ebg28DJ7j7CzA4Hnnb39WZmWc3vcfdbzewSoMjdK+MdUbkq2akynYi0Cpq4zq8L8Ly7vwFMiPvKgTvM7CbCHMMHuV5oZqOAl4E1OZ6udPeSzIPQ41AvQUQKjirT7SIzaw9s9RZ+cKpMJyKFRpXp9qCWXNwbvV6V6USk1VCSEJGctm7dSm1tLfX19WmHIntIUVERRxxxBO3atWu6caQkISI51dbW0rFjR3r27MmO92hIa+TubNiwgdraWnr16tXs12niWkRyqq+vp1u3bkoQXxBmRrdu3Xa5Z6gkISKJlCC+WFry/6nhJhFplj29TL2WeG+Z1atXc95557F69ep9cj71JEREWom5c+dy6aWXsnHjxn12TiUJESlYVVVVjB07ljPPPJP+/ftz3333ce6559KnTx/mz5/PYYcd1tD2kksuobq6mrVr1zJ8+HCGDRtGaWkp69evB+C6665j2LBhlJSU8MADDwAwYsSIhm/klZWVTJs2jXfffZeSkhIuuOACBg4cSEVFBZdffjmDBg3immuuAeDuu+/m+OOP58QTT2Ty5MmJ8Y8fP57x48czatQoysrKWLt2LQCzZs1i6NChnHTSSdx6660NbceOHcuIESMSk0CXLl2orq7e6Rzl5eWMGjWK4cOHc+eddzJ69GgGDBjAmjW5fsu7azTc1AQzO8DdP0s7DpEvq02bNvHss88yf/58KioqWLZsGUuWLKGioiJn+wULFlBSUsItt9xCTU0Nf/vb33j99ddZt24dNTU1bN++ndLSUs4+O3m4a82aNSxcuJD6+nqKi4tZv349HTt2pLi4mNtuu43Zs2cze/ZsTjjhBO666y62bNlC+/btcx6rX79+VFVVsXDhQqZMmcL06dOZN28eNTU1tG3blvPOO4+VK1cCUFpaypVXXpkY1znnnJNz/5FHHkllZSXf+973eOedd1iwYAE33ngjjz/+OFdffXXi8ZpDSaJpV5hZL2ADoT5ERqf4uMnd7wEwsznAdKAMaOvulbkO+GUtX6oxaGmJQYMGAdC5c2f69++PmdG1a9ed7tL5/PPPASgvL2fGjBmcddZZdOjQgenTp/Paa6/xyiuvMHLkSADq6up4++23c74eoHfv3hx00EEUFRVx6KGHcvDBBwOw335h8OXBBx9kxowZrFmzhiFDhuSN/7TTwmWjpKSEyZMns2rVKtavX9+wf+PGjaxbtw6Avn37Jh4nn+zPqE+fPgB07dp1jwxLabipCe5eAbwDPNpovaXvE9ZguiereRv+UZZ0JypfKrLr2rRpk/jc9u3b+eSTT9i2bVvDt/HHHnuMIUOG8Nxzz3HhhRdy++23069fP0aOHEl1dTXPP/88F110EUcddRQdOnTgz3/+MwArVqxo1jkhDDfNmjWLxYsXs3LlSpYtW5bYdvny5QDU1NQwcOBA+vbty4ABA1i0aBHV1dWUl5dz3HHHAS2/m6ypeHeHehJ5mNkQ4Crgu8BX4lLhEBbtm9uM1x8G/BD4ASEpqHypyB50xRVXUFZWRo8ePRq+QQ8ePJgJEyZw8803s3nzZmbOnMmQIUNYvHgxZWVl1NXVMWbMGLp06cKkSZOYPHkyhx9+OMXFxc0+78CBAznllFMoKiqie/fuDB48OLHtE088wfz582nTpg1z5syhuLiY008/ndLSUjZv3szxxx/PxIkTd/uz2Fu0wF8TzOx0wjDTfcCV7j4xFh6aRlgG/E7gqdi8J1AS908CPgFucPclZtaFkBB6AMMJZU7fBn4e2y1uau5j/+5HeffLZ+7R97cvabipdXnzzTc55phj0g6jVVi6dCnXX3/9Dvv69OnDtm3bGDduHKNHj96l440ZM4a6urod9lVWVjYkwt2R6/9VC/ztBnd/1syKCNXocj3/AaGmNWZWlfXUw+5+e9Z2i8qXqjKdSOErLS3d6a4jCHcetcSTTybVK9v3lCSa5wpCJbrzzew4dixbmuQjADPrDGxqaflSVaYTab2qqqrSDmG3KUk0wcxOAd4g1LD+n6zhpszznYFvAAOBXAOT3yVMfD+cta/Z5UtFRNKkJJFHHGb6d+Di2BOYCODupWaWuR12EKG+dQ2Q+Z38a8B/mdlEQo9heKNDq3yptArurvWbvkBaMgetJJFfL+COmCAamNkdhMTwI3dfDCyO+8cCuPsKoF+e41a6+7Ss492PypdKgSkqKmLDhg1aCfYLIrNUeFFRzunVRLq7aR9T+VJpLVR06IsnqeiQ7m4qICpfKq1Fu3btdqk4jXwx6RfXIiKSSElCREQSKUmIiEgiTVy3Imb2MWHdp0JxMPDXtIPIUkjxFFIsoHjyKaRYIJ14erh7ziUdNHHduryVdAdCGszst4ont0KKBRRPPoUUCxRePBpuEhGRREoSIiKSSEmidbk37QAaUTzJCikWUDz5FFIsUGDxaOJaREQSqSchIiKJlCRaCTO7zsxq4qOkAOI52cxeKIA42ppZlZktMbOXzeyclOPZz8xmm9nSGNPX04wnxnSgmb1tZvkWndxXsSw3s+r4uL8A4rkm/j+tNLPylGP5TtZn86KZbTGz1CuN6RbYVsDM+hPKnZYCXwMeIVbDSymeawmFkz5NK4YsFwN17l5mZgcDK4AnUoznHMICjqVmNhKYHvel6Sagc8oxYGbtgbbuPiLtWADMbDBQBpxCWNL/2jTjcfc5wBwAM/sZMM/dP0wzJlBPorUoA57x4A9AWzPrlGI8vwe+leL5sz0CTI1/f55mIADu/hix3Cyh4uDL6UXTcCHsCryaZhzR14EOZvacmf1vAfSIzybUgPl11iN1ZvYNwhfCX6QdCyhJtBbdgI1Z23VxXyrc/RFga1rnz+bude7+kZl1BOYDPy6AmLbFoZSZwIa04jCztsAthBrqhaAeuJ1Qi2US8KsYY1q6E6pJXkAoKPZLK4zCGVOBaV4gdxUpSbQOfwc6Zm13JsWLT6Exs8OBhcCv3H1u2vEAuPsE4Ghgqpl9JaUwpgAPunuhLDmxFqiKPeI1hKUnDksxnnrgKXffHOOpIyyJkZo4QjAEeCbNOLIpSbQOSwjfvjCzXsBWd9+UbkiFwcy6A88CU929sgDiuczMroubnwIfk97czWhgvJlVA8cBc1OeCB0PzIKGxN4J+GOK8fwGOC3ebNCdMC+RdkI9FVgU684UBE1ctwLuvsrMFpnZEqANoasuwXWEobfrzez6uO9Md/8spXgeIVyMXwAMmOzuqQzNufvJmb9jopiY8kRoFVBmZksJ5XonuHua80gPAycAL8btSQUwxHMk8GbKMexAP6YTEZFEGm4SEZFEShIiIpJISUJERBIpSYiISCIlCRERSaQkISIiiZQkREQkkZKEiIgk+n/f/nnLcH/XvAAAAABJRU5ErkJggg==\n",
                        "text/plain": [
                            "<Figure size 360x720 with 1 Axes>"
                        ]
                    },
                    "metadata": {
                        "needs_background": "light"
                    },
                    "output_type": "display_data"
                }
            ],
            "source": [
                "merged.sort_values(by='museums_per_1m').plot(x='Chinese', y='museums_per_1m', kind='barh', figsize=(5,10))"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "The [actual Caixin piece graphic](https://datanews.caixin.com/mobile/museum/) gives you the people per museum, and draws a line at 300,000 people."
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "<img src=\"\">"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "We can easily reproduce that one with matplotlib. If your characters are showing up weird, make sure you ran the font-setting code up at the top!"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": 68,
            "metadata": {},
            "outputs": [
                {
                    "data": {
                        "text/plain": [
                            "<matplotlib.lines.Line2D at 0x11969a588>"
                        ]
                    },
                    "execution_count": 68,
                    "metadata": {},
                    "output_type": "execute_result"
                },
                {
                    "data": {
                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAGCCAYAAAChJrSAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzde7xVdZ3/8ddbQPGCIhfNEgQNMzXNREUTRCzNNNKmizqpkYZaTlbG6GgXG60hqzHLJiIZb9NUmr8SCzNRQQJMUcssFc3yUqMieSNFUT+/P77fDZvjgbPWPut41jm8n4/Heey9117rc75rr9tnfdd3fZciAjMzMzPrXut1dwHMzMzMzEmZmZmZWS04KTMzMzOrASdlZmZmZjXgpMzMzMysBpyUmZmZmdVA3+4uQGcNGTIkRowY0d3FMDMzM+vQbbfd9kREDG3vux6flI0YMYJFixZ1dzHMzMzMOiTpwTV958uXZmZmZjXgpMzMzMysBpyUmZmZmdVAj29TZmZmVkcrVqzgkUceYfny5d1dFOsG/fv3Z+utt6Zfv36Fp3FSZmZm1gUeeeQRBgwYwIgRI5DU3cWx11BEsHTpUh555BFGjhxZeDpfvjQzM+sCy5cvZ/DgwU7I1kGSGDx4cOlaUidlZmZmXcQJ2bqrlWXvy5dmZmavga9/emal8T573sRK4xU1Z84cpk2bxo9+9KNu+f+9mWvKzMzMzGrASZmZmVkvdfHFF3P44YdzwAEHMHr0aH7+858zZ84c9tlnH8aOHcuHP/xhXnjhBVasWMFHP/pRxo4dy5gxY7jiiisAGD9+PCeddBITJkzgoIMOYsmSJavFv+KKK9hrr714+9vfzqc+9Skiot1ynHXWWRx55JEccMAB7LXXXvzmN79Z4/RnnXUWhxxyCOPHj2fx4sWvivWXv/yFMWPG8IEPfIBddtmFc889l2OPPZZdd92VKVOmrCz3PffcA8CFF17IWWedxfLlyzn88MPZe++9edvb3savfvWrtZZh2rRpANx///2MHz8egLe85S2cfPLJjBkzhkmTJnHmmWcyduxY9t9/f1588cVOLi1fvjQzM+vVli9fzuzZs/n73//OnnvuyXrrrcdNN93EVlttxXnnnce0adPo06cPm222GfPmzePZZ59l9OjRTJgwAYD99tuP7373u1x44YV85Stf4b3vfS8ATz75JF/84he55ZZb2GSTTTjllFOYOXPmyu/b2myzzfjhD3/I4sWLOfLII5k9e3a70wOMGjWKb37zm2ucp8WLFzN79myWL1/OsGHDePjhhxkwYADDhg3ja1/7WrvT3HfffSxZsoRf/vKXLF26lD/84Q9rnIc1efbZZznqqKO44IIL2HnnnfnqV7/Kl7/8ZSZMmMCdd97J6NGjCy2TNemVSVmR6/bddS3ezMzstXTAAQesvBsQUlcdRx55JJAStnHjxrFs2TIOPPBAAAYMGMDOO+/MAw88AMA73vEOAMaMGcNPf/rTlXHvv/9+lixZwqGHHgrAsmXL2G677dZYjkac7bffniVLlqx1+je96U1rnaftttuOTTbZhP79+7PlllsyZMgQANZb79UXAF955RUg1XKdeOKJHH300Tz//POcfPLJheahMX3DrrvuCsDAgQPZaaedABg0aFAl/dH1yqTMzMzMkltvvRWAJUuW0KdPH0aMGMFVV13FZpttxjXXXEO/fv344x//yJw5czjssMNYtmwZd95558rk5NZbb+Xggw9m/vz57LLLLivjjhw5kuHDh3PdddfRr18/fvCDH7DDDjustRzvf//7ufvuu9l6663XOP3VV1/d4Z2Lffr0Wev3G2+8MY8++ig77LADt912G1tttRV33nknTz75JDNnzuRvf/sb48aN4+abb263DDfccAOPPvooALfddlup/90ZTsrMzMx6sYcffpgDDjiA5557junTp/PSSy9xyCGH8Morr7Dxxhtz6aWXMm7cOCZPnsy+++7Lyy+/zDnnnMOgQYOA1Cbr3HPPZeDAgVx88cXccccdAAwZMoRTTz2V8ePH89JLLzFs2DAuvvjiNZbj1ltv5YADDmDFihV873vfW+P0V199dafn+aSTTuKUU07hDW94A8OGDQNSDd0555zDFVdcwfLlyznjjDPWWIZBgwZx5JFHMn/+fHbfffdOl6coralRXk8xevToWLRo0WrDfPnSzMy62913382b3/zmbi3DxRdfzD333MPUqVNbmn78+PFMmzZtrTVgze6//36OP/741YZtsskmjB49mte97nWceOKJpf7/8ccfz/3337/asHPOOYd99923VJzu0t46IOm2iGi38ZlryszMzKwSb3zjG5kzZ86rhp911lktxbvwwgs7V6AexkmZmZlZL/WRj3ykU9O3l2C1otWkbF3jfsrMzMzMasBJmZmZWRfp6e22rXWtLHsnZWZmZl2gf//+LF261InZOigiWLp0Kf379y81nduUmZmZdYGtt96aRx555FWPJrJ1Q//+/dl6661LTeOkzMzMrAv069ePkSNHdncxrAfp8PKlpOMkzcl/CyS9KGlLSTMl3Sjpckkb53EPlLRQ0nxJJ+RhknS+pJvy+KPy8BGSrpc0V9I0SX3y8GPz/1kgyZ2JmZmZ2Tqhw6QsImZExPiIGA/cDHwW+AxwdUTsD/wWmCypL3A+cCgwHjhR0hbAu4AhETEOOBP4eg79VWBqROyXyzFR0iBgCjAhTzdV0vpVzayZmZlZXRVu6C9pN2Bf4NvAOGBW/moWMBbYDngkIpZGxApgLjCmedyIWAA0Hpy1FzC7TYw9gIURsTwingEWA8W6ETYzMzPrwcrcfXkmcFak20gGA0/l4cvy5+ZhaxveV9J6QL9YdUtKRzFWI2mypEWSFrkBpZmZmfUGhZIySZsCewLX5kFPAgPy+4HA0jbD1jY8IuIVYIVWPQa+oxiriYjpETE6IkYPHTq0yCyYmZmZ1VrRmrIJwI0R8XL+PA84KL8/JH++D9hG0sDcDmwc8JvmcSXtB9yRp1uUx2mOcQuwj6R+kgYCo4B7W5w3MzMzsx6jaJcY2wJ3N32eClwiaRLwODApIl6SdCqpfdh6wHci4jFJs4CDJc3N034sv/4rcGG+QeBuYGZEvCzpfGBOLtuUiHihE/NnZmZm1iMUSsoi4j/bfH6CVLvVdrxZrLoBoDHsFeAT7Yz7AKkGru3wGcCMIuUyMzMz6y38mCUzMzOzGnBSZmZmZlYDTsrMzMzMasBJmZmZmVkNOCkzMzMzqwEnZWZmZmY14KTMzMzMrAaclJmZmZnVgJMyMzMzsxpwUmZmZmZWA07KzMzMzGrASZmZmZlZDTgpMzMzM6sBJ2VmZmZmNeCkzMzMzKwGnJSZmZmZ1YCTMjMzM7MacFJmZmZmVgNOyszMzMxqwEmZmZmZWQ04KTMzMzOrASdlZmZmZjXgpMzMzMysBpyUmZmZmdWAkzIzMzOzGnBSZmZmZlYDTsrMzMzMaqBQUiZpiqR5kn4n6XhJIyRdL2mupGmS+uTxjpW0IP9NzMP6S7pM0hxJ10jaIg/fLcecJ+lLTf/rdEnz89+YrphpMzMzs7rpMCmTtAcwFtgvv44EvgpMjYj9coyJkgYBU4AJwLuAqZLWByYBD0XEeOAy4Mwc+rvAcRExFhiTk7QdgXcD+wJHARdUNaNmZmZmdVakpuwQ4B7gZ01/ewGz8/ezSMnaHsDCiFgeEc8Ai4EdgHF5nJXjStoAGBQRi/Pwa3KMscC1kTwI9JW0aSfn0czMzKz2+hYYZytge1Lt1zbA1UC/iIj8/TJgcP57qmm69oY3D3u6zbjDgBfWEOOZ5gJJmgxMBhg+fHiBWTAzMzOrtyI1ZcuBWRHxQq7ZWgYMlKT8/UBgKfAkMKBpuvaGlxm3efhqImJ6RIyOiNFDhw4tMAtmZmZm9VYkKVsIvEPSepK2AjYBfkm6LAnp8uY84BZgH0n9JA0ERgH35u8Oah43Ip4Hnpa0bU7uDgZ+ncc9EEDSSGBFvhRqZmZm1qsVuXx5ObA7sCB/Pgn4C3ChpL7A3cDMiHhZ0vnAnBx3SkS8IGkGcJGkOaRat2NznJOBSwEBsyPidgBJN0qaB/TJ/8vMzMys1+swKYuIV0h3VbY1oZ1xZwAz2gx7HjiinXFvJd1l2Xb42cDZHZXLzMzMrDdx57FmZmZmNeCkzMzMzKwGnJSZmZmZ1YCTMjMzM7MacFJmZmZmVgNOyszMzMxqwEmZmZmZWQ04KTMzMzOrASdlZmZmZjXgpMzMzMysBpyUmZmZmdWAkzIzMzOzGnBSZmZmZlYDTsrMzMzMasBJmZmZmVkNOCkzMzMzqwEnZWZmZmY14KTMzMzMrAaclJmZmZnVgJMyMzMzsxpwUmZmZmZWA07KzMzMzGrASZmZmZlZDTgpMzMzM6sBJ2VmZmZmNeCkzMzMzKwGnJSZmZmZ1UDfIiNJuhX4R/74Z+BLwIw8/d3AJyLiZUnHAifk8aZGxExJ/YHvA8OA54FjI+JxSbsB38rj3hARX8z/63TgPXn4qRFxc6fmsJO+/umZhcb77HkTu7gkZmZm1pt1mJRJWh/oGxHjm4b9mJR0XSdpOjBR0lxgCjAaWB+4WdIvgUnAQxFxtKSjgDOBU4DvAsdExGJJ1+Yk7QXg3cC+wHDgyhzPzMzMrFcrcvnyLcDGkq6TdL2kMcBewOz8/SxgLLAHsDAilkfEM8BiYAdgXB5n5biSNgAGRcTiPPyaHGMscG0kDwJ9JW3a+dk0MzMzq7cily+XA98ApgOjgF8C/SIi8vfLgMH576mm6dob3jzs6TbjDiPVlLUX45nmAkmaDEwGGD58eIFZMDMzM6u3IjVl9wEX59qrxcATwJaSlL8fCCwFngQGNE3X3vAy4zYPX01ETI+I0RExeujQoQVmwczMzKzeiiRlHyE3yJf0BmBTYCbpsiTAIcA84BZgH0n9JA0k1ardm787qHnciHgeeFrStjm5Oxj4dR73wPy/RgIr8qVQMzMzs16tyOXLi0ntwH4NBKnh/mPAhZIad1/OzHdfng/MyXGnRMQLkmYAF0maQ7oUemyOezJwKSBgdkTcDiDpRknzgD7ASZXMpZmZmVnNdZiURcSLwNHtfDWhnXFnkLrKaB72PHBEO+PeSrrLsu3ws4GzOyqXmZmZWW/izmPNzMzMasBJmZmZmVkNOCkzMzMzqwEnZWZmZmY14KTMzMzMrAYKPZDcquGHm5uZmdmauKbMzMzMrAZcU9ZDudbNzMysd3FNmZmZmVkNOCkzMzMzqwEnZWZmZmY14DZlBhRro+b2aWZmZl3HNWVmZmZmNeCkzMzMzKwGnJSZmZmZ1YCTMjMzM7MacFJmZmZmVgNOyszMzMxqwEmZmZmZWQ04KTMzMzOrAXcea5Xzw9LNzMzKc02ZmZmZWQ04KTMzMzOrASdlZmZmZjXgNmVWa26fZmZm6wonZbbOcIJnZmZ15suXZmZmZjVQKCmTtJGkByTtIGmQpJmSbpR0uaSN8zgHSlooab6kE/IwSTpf0k15/FF5+AhJ10uaK2mapD55+LGSFuQ/V1eYmZnZOqNoTdnZwMD8/jTg6ojYH/gtMFlSX+B84FBgPHCipC2AdwFDImIccCbw9Rzjq8DUiNgvl2GipEHAFGBCnm6qpPU7OX9mZmZmPUKHSZmkPYBBwJ150DhgVn4/CxgLbAc8EhFLI2IFMBcY0zxuRCwAdsnT7QXMbhNjD2BhRCyPiGeAxcAOnZo7MzMzsx5irUlZrgGbSqrBahgMPJXfL8ufm4etbXhfSesB/SIiCsZor1yTJS2StGjJkiVrmwUzMzOzHqGjmrJ/BS6LiCeahj0JDMjvBwJL2wxb2/CIiFeAFZJUMMarRMT0iBgdEaOHDh3awSyYmZmZ1V9HSdm7gI9ImgO8FbgUuAs4KH9/CDAPuA/YRtLA3A5sHPCb/N1BAJL2A+7I0y3K4zTHuAXYR1I/SQOBUcC9nZ1BMzMzs55grf2U5Qb6AOTE7ETgCeASSZOAx4FJEfGSpFNJ7cPWA74TEY9JmgUcLGluDvOx/PqvwIX58ujdwMyIeFnS+cCcXK4pEfFCRfNpZmZmVmuFO4+NiPFNHw9p5/tZrLoBoDHsFeAT7Yz7AOkuy7bDZwAzipbJzMzMrLdw57FmZmZmNeDHLJm1qMhjm/zIJjMzK8o1ZWZmZmY14KTMzMzMrAZ8+dKsBopcCgVfDjUz682clJn1Mk7wzMx6Jl++NDMzM6sBJ2VmZmZmNeCkzMzMzKwGnJSZmZmZ1YCTMjMzM7Ma8N2XZrZGvpPTzOy145oyMzMzsxpwUmZmZmZWA07KzMzMzGrASZmZmZlZDTgpMzMzM6sBJ2VmZmZmNeCkzMzMzKwG3E+Zmb1mivR75j7PzGxd5ZoyMzMzsxpwTZmZ9UhVPm3ATy4wszpwTZmZmZlZDTgpMzMzM6sBJ2VmZmZmNeCkzMzMzKwGnJSZmZmZ1UCHSZmk9SR9X9KvJc2T9BZJIyRdL2mupGmS+uRxj5W0IP9NzMP6S7pM0hxJ10jaIg/fLcebJ+lLTf/vdEnz89+YrppxMzMzszop0iXGe4A+EbGvpP2BrwDPAVMj4jpJ04GJkuYCU4DRwPrAzZJ+CUwCHoqIoyUdBZwJnAJ8FzgmIhZLulbSbsALwLuBfYHhwJU5npmZmVmvpojoeCSpb0S8JGkSsDVwHDAyIkLSYcA44Frg/RHxsTzNz4AvAP8GXBAR8yUNBG4A9gZ+HxHb53E/BbxCSsqGRMSX8/DfAuMi4pk1lW3AgAGx++67rzbs4fuXdjhPw944uMNxisYqGq+usYrG829WPp5/s/LxevpvZma2NnPnzr0tItqtcCrUpiwnZBcB3wSWAv1iVTa3DBic/55qmqy94c3Dnu5g3Obhq5E0WdIiSYtWrFhRZBbMzMzMaq1wj/4RMUnS6cDtwEaSlBOzgaRE7UlgQNMk7Q3vaNwVwGbtDG9blunAdIDRo0fHnDlzVvu+yufr1bXX8Kp7IPdvVi5W0Xj+zcrH6+m/mZnZ2kha43cdJmWSjgFeHxFTSW3JngVuJl2ynAscAswEbgG+KqkfsDEwCrgXmAcclKc5BJgXEc9LelrStsCfgYNJ7dFeBL4FTJU0ElixtkuXZmZ14wTPzFpVpKbsSuBSSTcBIjXSvw+4UFJf4G5gZkS8LOl8YE6OOyUiXpA0A7hI0hxgOXBsjnsycGmOOTsibgeQdKOkeUAf4KRqZtPMrGeqsnbRzOqtw6QsIv4B/FM7X01oZ9wZwIw2w54Hjmhn3FtJd1m2HX42cHZH5TIzs3Kc4JnVmzuPNTMzM6uBwg39zczMGtx2zqx6rikzMzMzqwEnZWZmZmY14KTMzMzMrAaclJmZmZnVgJMyMzMzsxpwUmZmZmZWA07KzMzMzGrASZmZmZlZDTgpMzMzM6sBJ2VmZmZmNeCkzMzMzKwGnJSZmZmZ1YCTMjMzM7MacFJmZmZmVgNOyszMzMxqwEmZmZmZWQ04KTMzMzOrgb7dXQAzM1u3ff3TMwuN99nzJnZxScy6l2vKzMzMzGrASZmZmZlZDTgpMzMzM6sBJ2VmZmZmNeCG/mZm1qsUuXHANw1YHbmmzMzMzKwGnJSZmZmZ1UCHSZmkvpIuljRP0i2S3iNphKTrJc2VNE1SnzzusZIW5L+JeVh/SZdJmiPpGklb5OG75ZjzJH2p6f+dLml+/hvTVTNuZmZmVidF2pT9M7AsIsZKGgLcBtwMTI2I6yRNByZKmgtMAUYD6wM3S/olMAl4KCKOlnQUcCZwCvBd4JiIWCzpWkm7AS8A7wb2BYYDV+Z4ZmZmZr1akaTsSuBn+f0r+XUv4Ij8fhYwDngOWBgRy4HlkhYDO+TvLmga97OSNgAGRcTiPPwaYCwpKbs2IgJ4MNfSbRoRz7Q8h2ZmZmY9QIdJWUQsA5A0APgJ8HngP3LiBLAMGJz/nmqatL3hzcOebjPuMFJS1l6M1ZIySZOByQDDhw/vaBbMzMxaUuWdnH6clHWkUJcYkt4A/D/g+xFxqaR/l6ScmA0ElgJPAgOaJmtveEfjrgA2a2f4aiJiOjAdYPTo0dH2ezMzs97MCV7vVKSh/1bAr4AzI+LCPHgR6bIkwCHAPOAWYB9J/SQNBEYB9+bvDmoeNyKeB56WtK0kAQcDv87jHpj/70hghS9dmpmZ2bqgSE3Z6aRLiJ+T9Lk87BPAtyX1Be4GZkbEy5LOB+bkuFMi4gVJM4CLJM0BlgPH5hgnA5cCAmZHxO0Akm6UNA/oA5xUwTyamZmZ1V6RNmWnkO6WbGtCO+POAGa0GfY8q24KaB5+K+kuy7bDzwbO7qhcZmZmZr2JO481MzMzqwEnZWZmZmY14KTMzMzMrAYKdYlhZmZmvVeV/bFZ61xTZmZmZlYDTsrMzMzMasBJmZmZmVkNOCkzMzMzqwE39DczM7PK+KaB1rmmzMzMzKwGXFNmZmZmtVSk1g16T82ba8rMzMzMasBJmZmZmVkNOCkzMzMzqwEnZWZmZmY14KTMzMzMrAZ896WZmZn1ej3hTk7XlJmZmZnVgGvKzMzMzErqiicXuKbMzMzMrAaclJmZmZnVgJMyMzMzsxpwUmZmZmZWA07KzMzMzGrASZmZmZlZDTgpMzMzM6sBJ2VmZmZmNVAoKZM0TtJN+f0gSTMl3Sjpckkb5+EHSlooab6kE/IwSTpf0k15/FF5+AhJ10uaK2mapD55+LGSFuS/7nvOgZmZmdlrrMOkTNJpwAXA+nnQacDVEbE/8FtgsqS+wPnAocB44ERJWwDvAoZExDjgTODrOcZXgakRsV8uw0RJg4ApwIQ83VRJjf9pZmZm1qsVqSm7H/inps/jgFn5/SxgLLAd8EhELI2IFcBcYEzzuBGxANglT7cXMLtNjD2AhRGxPCKeARYDO7Q4X2ZmZmY9SodJWURcCaxoGjQYeCq/X5Y/Nw9b2/C+ktYD+kVEFIzxKpImS1okadGSJUs6mgUzMzOz2mulof+TwID8fiCwtM2wtQ2PiHgFWCFJBWO8SkRMj4jRETF66NChLcyCmZmZWb20kpTNAw7K7w/Jn+8DtpE0MLcDGwf8pnlcSfsBd+TpFuVxmmPcAuwjqZ+kgcAo4N4WymdmZmbW4/RtYZqpwCWSJgGPA5Mi4iVJp5Lah60HfCciHpM0CzhY0tw87cfy678CF+YbBO4GZkbEy5LOB+bkck2JiBdanjMzMzOzHqRQUhYRfyE13CciniDVbrUdZxarbgBoDHsF+EQ74z5Ausuy7fAZwIwiZTIzMzPrTdx5rJmZmVkNOCkzMzMzqwEnZWZmZmY14KTMzMzMrAaclJmZmZnVgJMyMzMzsxpwUmZmZmZWA07KzMzMzGrASZmZmZlZDTgpMzMzM6sBJ2VmZmZmNeCkzMzMzKwGnJSZmZmZ1YCTMjMzM7MacFJmZmZmVgNOyszMzMxqwEmZmZmZWQ04KTMzMzOrASdlZmZmZjXgpMzMzMysBpyUmZmZmdWAkzIzMzOzGnBSZmZmZlYDTsrMzMzMasBJmZmZmVkNOCkzMzMzq4FaJmWSTpc0P/+N6e7ymJmZmXW1vt1dgLYk7Qi8G9gXGA5cCYzu1kKZmZmZdbE61pSNBa6N5EGgr6RNu7tQZmZmZl2pjknZYOCpps/L8jAzMzOzXksR0d1lWI2kk4DNImJq/nwXsE9EPNM0zmRgcv74JuDeAqGHAE9UVMx1IVbV8daFWFXHc6zujbcuxKo63roQq+p460KsquP19FjbRMTQdr+JiFr9ATsDN+T3I4E7Koq7qMIy9vpYdS5bXWPVuWzrQqw6l62usepctrrGqnPZ6hqrzmWrW6zaNfSPiLsk3ShpHtAHOKm7y2RmZmbW1WqXlAFExNnA2d1dDjMzM7PXSh0b+neV6Y7VrfHWhVhVx3Os7o23LsSqOt66EKvqeOtCrKrj9dpYtWvob2ZmZrYuWpdqyszMzMxqy0mZmZmZWQ04KTMzMzOrgV6blEnatTfHkrTGO2clHdxizNrNZ461b4WxKitXVfG6YllWqa7rRdXxqi5blXr7fFa8jdd931jb/VlVql4GdVz/q1yOq8XtjQ39JZ1G6oT2eGDLNl9HRDzcC2ItiIh92hk+DPhxe9+9hmWrLFaOtyAi9skbU59GHOCeiHi+G8tVSbyql2XT9LtGxO9ambYpRp3Xi9qWLcfs9O9fddnqOp9VbePNsdoZ3u37xuby1W1/lmNWtc5Wtgzquv5Xuc62LUWv+gN2AhaQngZwELAQ+BvwW+AxYEZPj5XjLQS+AOyUP28M/AD4PrCgN/xmTTEX5Nc/A+cCXwP+E/h5N/7+Vf5mlS3LppinAZcBGwDD2/wN6+nrRZ3LVtXvv47NZ6e38a7YnrroN6vd/qzKZVnlMqjz+l/lOrta3M5MXMc/YF/gfcCvgcOBE4AbSZ3Rlt0gaxmrsUIAo4Brga/nz+/L3y3sLfPZmNe28wUIOKMbf/8qf7PKlmWeppKdT53Xi5qXrcoDyboyn53exrtie6r6N6tqXuu8LKtcBjVf/ytbZ5v/emObsjcBA4E7gVNI1YmtXqOtaywAIuI+4ETgEFL7wIWNr7qxbJXOp6TjgKGSPppfJ+cH0n8MWJrfv+blqjpehcsSYHPSjvAyYCPgYuBe4GrgTxFxXME4tV0val62qn7/qstWy/mscBtfqab7xjrvz6pcZ4HKlkEt1/+uWGcbavmYpU56iZSt7kKqdm1o5cevaywAJA0mbTyHAoOAqyUdmv9Pd5Wt6vlcnqd9Ib/+o8U4VZer0ngVLktIO59g1c7nf1ssV53XizqXrarfv+qy1XU+q9rGV6rpvhHquz+rcp0FKlsGdV3/K19nG3pjTdmjwBuBzwDXAO8hVcnuBwyT9IW13RnSQ2JBWrn+E/h0RPwpIm4F/hW4okSMrihbpfMZET8AnsivSyLiB23/uqNcFcercllC2vm8Qtr5bNs0vOzOp7brRc3LVtXvX3XZajmfFW7jDXXdN9Z5f1blOgvVLYNarv9dsM6u1Fvvvvxv4AZS0rk9cF2bUW6KgjNe41i3A0eQMvZm2wLfAA6LcneS1HI+c7zGXS5/Baj2FX8AACAASURBVH7T9NWCiPh6iThVl6uSeF2wLA8CxgIzgeOA15PuOHoox/w+8JWIeKlArDqvF7UsW5W/fxeUrZbzWdU2nmPVdt+Y49Vuf9YF62xly6DG639l6+xqcXtpUjYA+BHpjoi9IuLcXhjrMtJZzJqqgiMijummslUWK8dbGBF7SxrK6rW7yyPi6W4sVyXxql6WOWZVCWOd14s6l63KnX+vn8+qtvEcq7b7xhyvrvuzKtfZypZBXdf/KtfZ1eL2xqQMQNJ6wKbARhHxt94Yq2p1nU9Ju0XEHZ2J0RXl6op4Val451PL9aLOZeuCA2avns8qt/GusC7sz6peZ6tUx/W/y9bZ6MStmz3lj5Stvx/YvOR0g4HtKyzHjsCb8vuDK4q5PvCuTsaodD67YPltlF93bjN8W+D1JeJsuYbh69XhN6tiWbadL9LdRoV/o9dgHnduer8ZsA3wzhZjHbmG4W8CTioRZ+8q57Gq338tcVvan+VpX1UW4M3dPZ/AXsDb2wz7ZCfLVen21E7897Ywzc7AFm3nseLjTOlyVbksq1wGVW+bwG7AiAribLimZQYcAPRrNXZvrin7JnBFRMyXtBmpT5KPRMSOJWLsBYwm9bfSuDul2b0R8ekS8R4DLoqI07WGHo/LkPR64BfAD4H+pEaMK0Xx6uHK5lPSRe1Mv5qI+GiRWE0xG9fuV/5mkrYiNRo9LiLuLRMnv/90RJyn1MP05cD+EdG2/cPaYlW9blSyLKtU8XoxgnRX1weB/wDeAMwD3gnsGxF7tFC+PwN3kA4kDwK3kO70egPwuYi4qWCcxvp1Oqs3cl4pIgrf4i5p74hY2PGYxVWxP8txmreBzYBLgL9GxCdaLNeWEfFYO8PXi4hXCsb4JKu6Tfg9qX3OM8DnW91HVrk9SboxIvZvZ3jpfbikM4D5wHmkedwF+B/gMOBTwHUR8Ww3lGtn4PGIeDx//mREfEvS9hGxuEysppidXgZVbpuS3gmcDDwMXEXq+mMMTfu1iDijYKztSMeeM9oMPwH4J1Ji3FKv/r2xS4yG/yD1IPyOSNd3z5X0gRZj7Qm8A9iBdJfKocC3SAeBMh6KiNPz+1a6OmjrEuBnpJXsX0h9wqyXhx/ZQrwq5vOs/DoA+AjwZuDjLZSlPQJQuq36DODkoglZ8/TZByRNA35MqlUpnJC1UdW6Udmy7ILEuIp5fD3p93+ClOTtQUrKAFaUiIMkkX6rPqRkbBtgd1Kv4bsAZxVNyNqYCBwNNHby00mJ//tLxvkGUFmSl1W5P0PSTqTf6ie0fpcvwE+Bdk90JBU90TmSdDfcBqR16y7SetYZVe4bN1jD8Fb24Y1plgPvInVkejFp+9oO+DfStvFal2siMF/SL8nJoqQ3AodJKpUsNqlyGVSxbf478CSplutLuQyPkvYdOwGXliyTctu5EaQE72jgE8A+rSZk0AuTMqXO3CCtmJtI+jTwdONzq2FJK9JzpB6KD42Ir0g6uWScWMP7coWRdiQ9t+v9wN6kgxIRcWf+/rmI+GMroen8fDbuqJlJSnimRsQTLZSl/QJKvyIlA4dExJMlJ2/+zUW6RfvfI+K3nSkSnfjNumhZnlVy/I5UsV6cTprPLYFxwFakHfXWpMv6hUVESHqc1Bv3b0kHp8+Rah++A1wg6T0lakM2k3Qg6bLNdqQD5RkRcZqkFyLigTLla9LpA0mV+zNJ3wZGSDoC+CxwM/A64ITcnmhuRJxSJibVnOgMJq0X65NqVPYAngcGS/ogQERcXqgwXbM9jZL0v23/FZ3rx2t70mN5hpK2gRUR8TWVe1h3leWqLFmseBlUvW3+FvgD6ZL9g5K+kIefFxF3lYwFsF2uyVtIOtk8LSKWtRBnpV6XlAEvN73/bpvv/rlkrImkFWowaUX9H2A8q3ryLSyfNTfbVtJ/NX2+NyLOLxjuRVLPwRuTzlQ3bfN92Y2ysvkErmfVXTeTgEm5ZgPgkYg4umggSf1IZ1oDJf2IdPBeRDootVKzJUkjSZfQtiLV0OwiaRfgtoi4vkSsqn6zqpclEfFg2WnWoMr14oekM9L1SUn1HqRluzevnuciFgGnkvocOprUjuMVUs3sXqSDXVEDSJdpNwHemod9Nr+2coCr8kBS5f5sBqnbg1+T2jKtllRLauVB1FWc6KxP6lG+X9P7DfP7YSXLU/n2ROoWYkqbYSI1eyhMqQ+sxr7wT6Ta5v1J29gggIiY8FqXq40qksUql0GV2+bmpMRpA2BzSROBxcA9pOPxthExs2Csw9sZtg2ApFHA7yPixpLlA3pnUnYTa6m+zT980Z3iC6zqVG8waWVbwaqefAuRNJ5UxdlsKWknSS7vRUChpCwi7geOyu0Avk1qoyBJl+dY20u6PCI+WLCIlcxnLtv+pMJ8GDgKWFaiHG1tRar5+FxEHJHPRg4BPgTcJOmfi7R3kNSflFD0A5aRLo88TzpraqwrXyEdzIuq5DfrgmWJpHm8eofVOIO+MSK+WDBUZesFace3MfD2/P4tpFrVHYC/lIwFqUalD+mxMAuAT5J2ti+QHoQMcGvBWC8Cf82vD5D6GerMHV5VHkgq259FxG8lPQdsAewo6WvADRFxTR7lUyXLlovQ6ROd/wN+SUrEtgZ+RTrx2j4ivlGmMF2xPQEvRsRf2w5sOtksai9SW8BXSPN5GCnxvJryCXZl5ao6Wax4GVS5bW5AurloaH4/ktSz//OUr2Hs386wR/KrSMf2dpsudKQ3JmVnkq5bi3QA/3l+P5p0MHgWKHqWf22e7k2kNh0PArcBb4tyPfbeRbp886umYf+IiNsaHyRdUiIekjYitdM5mVTb8BXSmcAcyrcpqGo+kfRvpJ3r4aT5fUrSicC8iPhDmVgR8RDwkKTPNQ1bDlySE7QfSBrX0fX7iFguaQqpEfGPSWeXT5Gq5hdExE+UbsIoo8rfrMplSUSMLTvNGlQ2j8CfSTv4GcAQ0oH4MFJD/Te3ULZDSTUFk0jr2QdJba7uITX0L/2svmwE8ElJ10TEf7QYo8oDSWX7s5ys70ha7/9I6v7gkFyLf0qZM/uKT3SmsepYdBFpuT5XtCztlK3S7Yn0WzVi9wXeS6rlvb1MkHyTxnak9kx/J60j/UgJ+3JJ342Ik17rclF9stgVywA6v20+Sqph/wPppoMLSUnjB0iXHReUiPVD4Pg2w14iXc48T9KWLZQP6IWPWYqI4yPioxExCXiw6f33SXc+lr3sAimDPol0Vn4X8P8kbSqp0GWXiHgiIp7qYJyyPQD/iNS48AFSrcP9wARSY8XBLV7C6tR8ZjeRLmFeCMwmNeZ+EZgh6ectrqwbSToGuEXSUbkq/XnSBrV7kQAR8WdSUnYKqR+eAL5I2sgPjIhFLZQLqvnNKl2WkoZJGt7mb4sWzuwbqpjH7Uhtvo4k1ZZ9htQm7N9JB6iynsjxfprL9RbSA4/vJtXYfFapP6IiHo+IS4AlpLaQJwD7SRoDbJgvR7RqBPCjfLJSWpX7s5ys/zFS/1Midc/wBtI28b3cFqhorOWkk5sdSCc6j7LqRGfDiPgFqdFzERuRLtPeS9pXvI50EnuXpI2LlqlJZduTpM/nOEj6Kml+X0fqZLVt56pFHEM6eH+WVJP6OdJvdwYlboiqslwRMZ+0fQ5gDclimXhZVcugq7ZNkX6vGaTLtbu1GOcPkm4krb8/B94q6aSI+K8Opluj3lhTtiZ3km6/n9XCtDeTGj02H9TGkQ5WE0vE2UbSzIiYSOtnC0gaCFwbET+TdAGpp+W7gY9IGg1cKuk7EVF2Y+r0fOYNvHF316nAwoj4fK4JnEY6wyjTbgLgbNIO7Pb8OpJ0BgavPlvpqHy/Bw6QtGlEPCvpQ8AcSbu32EDzZlIj+Obeqwv/Zl20LM8inek29CFdOtxR0vXAlCh3J1VjHpu1sv7/gnRn4hdIB6YJpIPR4ZJeFxGPloh1JmldPYZ06esS0gkBpCStjMZyu4qUaATp0upxpDPrKaxqrF/E4xFxSa4hnkma7/PyzntDSaMi4r6SZWyr1f1ZY15/kcv4N1Ji/DHS9jmuaKCI+LOkxonON1l1ovMLSc9ExK/WGmCVZaRav/OAyRHxR0lXk9oK3iTpjIi4ttDMVb89LYqIa5S6U1g/Nwa/S9KFwLcl9YmIKwvGAhgdEScq3bV3FWnd3T/P639JOrXgJd+qy9WcLG5DShZHkh5MXqp7l4qXQZXb5ntIx6TI78cAu5Iqp3bPx4RSNXAR8bHVCiudBPxO0s8i4v/KxGoO2qv+gI81vR/a9H4zYGzJWG8jVXMOJ62obf/6d6Kc27b5PKHFOKPbGbY5qUfmojEGA6Py+0PafDcA2KTFsg1tLgdp5d+ohTjbrWH4XsBHS8Q5Yg3Dd2qhTGNJ/Ws1Pne6E8gqlmUH8TcgXeKbD6mPwg7GnwK8saL/PQXYrelzX1LiuD6wL7BVCzHfnF/3Afao8ndv+q6VDkIX5tfTSTVabf+ml4g1vOlvj6b3u+R1sNQ+CHj3muaT3LF1K/Oa32+aX7ci1XoV2m/kfcy2tNO5M+kSWEsdiFa5PZGaZLxqfoANWizbuHaGvQ0YVHD6Ifn1RGDjzpYLmJZfLyPdNbkJKXH5LumS9AHdsQzWtm22WJ6xjd+une8KzyOpTdnINsManTrv0ep6EdELO4+V9DBpx7cmd0XE/ysY6zFSu5qRpDYO65GqdR/K7/eMiO0LxjoIuCXW0I2D8nO0isSqmqTjI+LC/P6WiNgzv3838HlSwlG00XRz3EatYPOwYyNVRxeZfl/gPtIlqg+R7pyBdGa9VURcpRIdJZYZt0Cs5k4gnyadcTU6gTwFmB3l+/Xpckp3tO4YER3eaVdgW/p9RPy04P9dSLqssjWpc9BJpEvQA0gnOPMi4n1FYjXFvIN0SfqNzctVqaPV8yNdsi4a68aoriPO0dH65fC2sSrbB+V4lc1nnu6wiPhZO8N3ioJtSNvscy6OiI80ffe/wKUR8cuyZauS2nSSq9R59VPRif6oJB0cq26yKLUMJH0vIk7I21W7NU4RUbbfLSSNA+5o3ncpdfz8TES00syg0yQNi/zwcklbR8QjTd+NixJ9EjavaxWVrZJOnZv1xsuXz5Bu+W7vbgqR7uYrlJSR2q1cTGon8QRpZyjgsoj4q6R/L1Guz5EuXZwQTQ38O0PSW3KZ2hURRRt8Tia1AQNWdtB6NKndzyVlEjJJe5AuZdyTPmomq5bFDaTr+EXtTGoULlJbpD3y3+05zlWN8hYtXolxi8ZaDhzM6v36vJF0Wa5wL/UVLksk/ZD0262cvJ3RdikQqsi2VCgpy8aS2s18gdSo+DRSI//jyiZk2fMRcYykhZLeFhG3K3V4OapMQpZV1hFnIyHLl5ba7SQzircFq3IfBNV2OEqkS1TvJN1pvdo6IqnofDb/7zc1Tf8Z0iPQSidkVW5P2U/z5eg/RMTLpNrZs0jtpVr1eVKnuQ1llsHytbSZLL0s82XGT5FOfPclNcwHICL+UjZejlnVMrhc0gJS+6+TgY8rPS3gP0kndkWf3HEcMERr6c4nIv67YJkaKu3UGXpnUvZ0RNyQ2zA1bkntT9qBj5NUphHk5aQDyZ6kBuuRY52fd/4XlCzb4cBlkp5pGnZ3RJxWMk7DT3O53k1qW9J4bdylVXTH37wRh6QNSXfMHEuqoSpjU9LvdgTpIDIkVj3W5edAmYPvXcB+rNrZ/4SUjP2JVcldmarerqgWrqJfH6huWUK63LvyYCFpFjAnIs4tWSNb5bYE6fdfmt/3Ab5Hagy8Rck47Zks6XWkWsuvdDRyO7qig9DfkBtjN8W7nFSbWlTV+6DXaj5/TPt9ObWn+X+HpN1Il7vXI7W1akUl25OkN5D2g5Aaw5+j1BXPlZI+u5ZJC4Vv87nMMvgL6aR0FOlOZEjdkfwJuDzKd4S6Oym5uZB0Mv0YKeHZkHSXpyJifMmYVe3TAvg6KSHbS9JVpJO675VM2PuTfvPG62dIbVxFakv3taKB1DWd1AO9MylrGNWUDCyIiHEAEfEvRQNExJeapv+SpEdJl9N2JJ0hHS+pb0QUeSRI5CrY8ZL65GEi3YEGre0UH4+ISflA2/x6a4kz8Vf971wl/3FJW1OuE05IScpwUsPyJwAk7UO6e2ZeRLxYItaDpB37FsCBpLu7hpF21lvnWoKtiwRSamT9pg5HLBar6k4gobplmYuo5t7sf0Z65NW5JeM0dHpbyvqREgxIdyudQK4pK1ugfNbbuPU+IjWefjtpZ1/q5o+s8o44I+IZUm3jqoCp89iHSsSoch8Er918vlhiPreW9CXSnZcjga+SngRyQ6tlorrt6dOkxPfQiPhpTlb+V9L76HzNe2cS4emkxOR00ja1Jak92CjgVEnLWtg+mz1AOineKSL2lzS3hRidXgZ5v70jqWnIy6TmDhcDM3ONZWER8R1JH4l8Z6SkDze9Xzm8oCo7dV5Nb0zKGhuKtKrH/G0l/VdElHoGo1Z1wrljfv9IRIzNK1fjrqWy5aJ5ZZJ0YD7IF86uJf0T6W6ZxqWIaPNaVvPOZbCk40m3Lj9J+aRsbJ5mc9IBANJdLnuRGv+WsZQ0T8+Qbql+jJT0PUy6ceN6Cta85R1LVQ+Jrqxfny5YlquFz6/LWXVWWiZuZdtS9l1SFwyXkNrdXZD/x+aSfhURB5aMJ+C/SLU/G5CWweOks96y/RhV1UFo81n0q76i5HKteB8E9ZzPZ0lPediUtK72Bf5F0l2RH5BdokxVb0+nRcTLknaQ1LhMthmp24jZZYPlJKNxp3Y/SY3EU6ST2aKmkZLyRhu0A0k1eY3fvuzyfF2e7h2kfrza/l6Fa/6rXAZN++1jSP2JHUSa588rPWu1bLIYBd4XUWUn9avpjUnZbElvJV1225BUVflt0gG0lLzz24T0MNaxkubnjahvfp0Uxftbmb+GM9oXSD35F+6nLFedLyszTUchm94vI92NOY/UNmzzkrFmkNozbdKIGxH/CSDpQkl7FG2jFhHP5flcQTpz+wupRuohYHhEzJVUpjF9JZcvo8JOILtgWTY8QfrdHo3UDUgrKtuWSJcU9yDV8swmHVBeiojzWilYRMzItWWTgN+R1tenSJckzpI0NaLUXUxVdcQJq59Fd0rF+yCo53w+E6lfMyT9S0RMkLQfMEvS4Y1G3kV0wfb0zZyvLgfmkvrB+zkpGS6dlEU7N1k0lDxp/BypDdglpJPnG0hNPU4nXUm4qmTRXiTtHxs3oq2WcERE4c58u2if9m+kE7DtI2KKpOGkrlc+G8W7SzkV2FKpraKA1ze9f52kzzSOVQVU2Un9anpjUjaYlO1PJzUqnk968PEfJJ0bJfoOkfQJ0uWVT0n6IqlB/Hmkfod+VHJneCupT5p3SDqfVA0r0oHqtMZOqaiIuDaXqd2vy8Ri9Q3whYj4qqRvkTbwISVjQerzqJEsNZ9h3gB8mOKPv4FV62iQGsZuRepPh6bhRfWR9N95mhWkg/itpD51yvZRVlm/PhUvy4bRpN/udUqPvPlGRFxBuTPoyrYlUrK0G2kZ3kRKym6T9J7GCC1c8iUiIh8ADiJdnr0+v9+L1L9ah/TqjjgvY1VHnKWTxljL3cWSTigTq8p9UI3ns3kdV449V6lh/U8k7R0RhU8EKt6eGjdA7UdKynYmJWPTSNv+z0vGW5tS+zLSidejpCYTg0j7xp1ITWLKPtXj7/n/35bjRMnyrKaqZSDpD8AVpPXzPaTmP1/LidmHSBUahZIy0mOQXsyvIt1o1ND2kv5aRcTKJhLNl2MlfRK4PyJa6Q91ZfBe80c6k5+S3/+IdEdE47txpJX1fSXinZBfjwM+1PQ/JpL6bvlGiXJdRe6ji3SwaPR9dhDpLP+oFub3YdJz/55p8/psfu2wL6ocZ0zT+1vbfHdjyTL1IVXvbwJc3c7315eM98/tTUPu84qmfpIKxBpKunz2BlLbtF1IB7n5lOwLiYr79alqWTaWIat21INIfT1dRTq43wJsXnCdrWxbal5WpMb9FwFfLLvOt4l3O6kz4oVthk9ubK8F4xycX98JnNc0fANSQvpPLZZvE1bvZ2ybXOaRJWJUsg+q83wCVzW9/0yb775WZlk2TVfZ9pTjLWh634/UvOPYzqy/7fyPMvuyH5MuV15PSsA2IO3PPp23zRPK/m9Su8KPkmqB7ia1Kbs7709u6Y5lkPdXHyIli5/Lv33h36mdeLe2Om2RmMB44Mudidfr+ilraO8yWW53MjIi7ikZa7NIt7s2D+tDOrg90ULZDo+m/p2UniN3YBR/Qn2XUe5aoOmzosWVRNKEaNNYV9KYiChUg1Hwf+wVEb/pZIzNgWERcWcL076qnxx1f78+00ht71Yb3PQ+SOtbocbhVW1LatN/l6T3RcE+AzuIu3k09f8naaMocbmlaboNgT7RptZU0gYRUfYB7I0uMY5q56sgHTRXlIhV2T6ozvPZTuyBwHNR7gahyqnNXct5/b8WODzW0PdkC/9j86Kx8j6rH+mRRXe3+U6kBvqF78CUdHpETJU0idSJ79QyZe8qkp4mJWSN/VeQ2o6+mIdFlKhhb3t8q6iMQyNiSX6/GbBr22NCqXi9NSkzMzOrgqT3RMTVTZ+3JD3XtF9E/LrbCma9Tq97IPm6JJ+hNn9uPpM7Np9NWc1J6i9pgKRh7Qw/2MvRrBq5FqnM+B+X9HFgmKQD8g0IkG6OOIZ016O1w8en1jgp69kafRg1HsD8jXwg/zLp9uFn1jil1clBpN7BT5Z0taQLlHqFfgOpTd2C7iycWU8j6TSlx8Q1Pg9QeiTOd0qGOoV0U8pyUl9/ja5W+gBzyPtga5ePTy1wUtY7jJY0hnTnzS9Ina5OjJKd61m32pLUSPo60o0S3yc1lj4AeFc3lsusJzoKOEDSB5U6wb6O1HD95JJxniJ1EN32mZQvk/a3Tso65uNTCb2xS4x1iqTtSb3nf4h09rYBqYPJVvqSsu5xDqnR6j2kO9deIN0N9yPS7fdfAz7YbaUz63meiYhTYeWNLx8pe4NXNpT0IPjHSN3DDMmXMwF+13zDlr2aj0/lOSnrgSQNIfWPsxWpb6bnSHcCjSH1cD9D0ogo99gI6z6fI/UHtzOpe43NSF1YXEJ6CsK3u69oZj1Tvgt6HKm7hz0l7Zm/+r+IKPrc1hWkvsA2I13CXEFK0AC2kPSNRvJniY9PnePLlz1QvgV+b9LB/K2kXvR3ID0P7HHSY38OcUPKHqO5o8a/kXb8A0m932/Bqo54zayYlY8yItXQ9Gv6+1aJOE+Smg8MJj1J5O8RcWX+bj0nZK/m41PnuKash4qIyP0NnUZ62PcFwIOSJpCS7Ruq6j/HutzJpGr9PwF3kDoFDeBpUhuMf3Rf0cx6DqXHn50PbBoRfybVylxGap/57Yh4SdL6JUIOJT2546+kdp8N/YCxkq6K9AxSa+LjU+vcT1kPpfSctKHANaTHRuxMeiTI3aTHbyyKiLd1XwmtqNxGpfFsyWNJvVhvl1/3BH4fEZO7r4RmPUdOBj5DeibhMcCfSY9EOhA4NCKeLxHr2KaPfyLVlP1R6eHwJwIXxFqeZ7mu8vGpdU7KerD8fLmdSD0eb0SqYn8TqSuFH0bE97uxeFaQpPeSaq0/RXoU0nGkSyx3k54T+ZOIWNx9JTTreXIbsouAwyLiPkmTgT2j6bmFFfyPlp4esS7w8ak1Tsp6sHyr94qIeKzN8E2AI73S9wySxgIPRsRD+fPrSc+rvJ30LLoFEfHHbiyiWY8kaQ/Sce6W/Hn97n5k07rCx6fWOCnrBSRt2XbFt55D0oKI2EfSaaTLlq/iy5dm5eXnCu9Y9fMOzbqKG/r3Dj+lqXNDSRdERNlOEq37vRc4GmgkYNOBy0m9X5tZAZKmN53EbAocQap1tteIpC8Ab2zvK9JNTMd15kH1vZmTst7JDSh7ls0kHUjqBmM74NfAGRFxmqQXI+KB7i2eWY+yM4CkXwP/B/xF0k+AQY0RImJCN5VtXfEu4Mj8vnE5TvnvZ07I1sxJWQ8l6RpW9cWzg6RZja8A9//SswwARgObkPr1gXS3GKzaoZlZOX1JnZd+EHh9biKwMCL27mA6q0BEPJifprBjHnRXRHxckhOytXBS1kNFxMGN93lH0/zwXT/Aumd5kdQP0ovAA6SG/e77yKxzXiE9Z9G6z66NJNjHpWLco3/vVLgfHqudEcCPJP1bdxfErIfaVdIiYCTwse4ujFkZrinroSQ1HlAt4HdNnwGmS/pgRFzeDUWz8h6PiEsknQjMJPXif56kG4ENJY2KiPu6t4hmPcbv8qXK3wPLSG01JWkjYD1JG5bpQNY6ZUnuaBfg8W4tSQ/hpKzn2jC/bgQ8RWqT9Bbgh6REzXqOxvK6CphCakf2MKkT2UV5mLvEMCtnGWl/OIXULOBK4O/AlZIOc39lXUqSRHrOZWP/FpL64Haya+WkrIfKNSuHAp8EvpU/zwLmNDohtR7jXwAiYmp3F8SsF/hDfn0P6WHkRMQ/d19x1km3Azfw6gRMwD8kbZEfTm5tuPPYHiw/RuSPEbEsf34z8GxEPNK9JTMz636SNgB2iIjfdXdZzIpwUtZDSdo7IhZ2dznMzHoKSdv7ObJdT9Lb1vQUBUnDgZd8h3n7nJT1UE2P5jkd2La9cfxoHjNbF0maFRHvlnRZRBzd9LogIvbpOIJ1hqSbgANZ1cPDKxGxPH93BLB+RFzaXeWrM7cp6/km8upH81wBvL/bSmRm1g3yw65PAwbnGpkd27xu0K0FXHcI+DOpr7j+wL2SHgcuAkYBs9Yy7TrN/ZT1XO09mmdcRPwJeMGP5jGzddD7gYWkZOBLwNbtvNpr437gJuCPwO+AwcAJwP75s7XDSVnP1fbRPG/Gj+Yxs3Xbn0jNOQaQupT5E3B80+sDuasG61rDSflFsOp4FMA04JmIeKm7vc/ABQAABpNJREFUClZ3Tsp6rraP5vmfiJjfvUUyM+tWd5IeQn4/ad84FJgLrADmAcuB67utdOuOZfl1ZR9l+fUYmh4Mb6/mNmW9wwjgk5KuiYj/6O7CmJl1h4h4mtQ57IbAFsBDwHWkTmOPAo6IiJe7sYjrir+zei3ZSNIVnbOBXdxP2Zq5pqznejwiLgGWkB7NcwKwn6Qx5EfzdGvpzMxeY5ImSvpf4D7gMmAC6VLmO4D5wEHdWLx1zQ6k330XYAjwP8AjwB3A27qxXLXmLjF6KEkLI2Lv3CXGdqQzkua2EuEuMcxsXZPvsjwJ2IN0I9RtpGTsHcCX3Lt/15M0LyLGthm2PulS8nnAVhFxfrcUruaclPVQkkYDD0fEY91dFjOzupE0ENg2Im6XtHNE3CVpm4h4sLvL1ttJeiupTd/LEXGvpIMj4hpJQ0mVBxtExMPdW8p68uXLHioiFgE/7e5ymJnViaR3/v/27jZkz7KO4/j35yAfSk2JFT4sskSjxER8DHQGezESfRVLX0w0Al+FoeIwCjSIYPa2B6h0KmkW9EInTq1ZDffoQ3MvtjJkjilTR7K6XWHt34vjXN3ebncG3jvP67y/H7jhOo7rum7+55vr+l/HcZz/P0BVvdklZEuAV5KcDOxNcmu/EY5fVT0PrAWu76a+2c2/XlWvmZAdngf9J5u3dkvSO92Z5OfAP4AXaGWDFgL/pB38PwZY2V9488bLVbWie+x31XtkUjbZ3HuWpHfbQisZdLBY7BPAFHBubxHNP3WYx5qFSdmESrIWOKvvOCRpgM4HPgtso63SLKWtlL3UZ1DzRXcD2nRnJPn+tPEOD/ofmknZhKqqK5Ks7zsOSRqgZ/jvSlnRygZN0bqgaA4lWUyrnTndXuAnB19C64FpUnYIJmWTzSVhSXq3E7q/LbQdhQton5fP0upmae5sA1YAj0+bm6qqZw4Okqw64lFNCJOyybYgyU9pHzZvA28Cm4E1VfW3Wd8pSeO0CtgP7KBVll9Ga0W3vxv/rr/Qxq+q3gCYrcVoVd11xAKaMNYpm2BdzZcPdMOjgJOAi4HrgFuqyu1NSfNKkq20av6fADbQmmNfAeyh/XC9sKrcxpxjSfYAG6vqqiSbq+qCvmOaBK6UTbCqen3G1C5ga5JfAKf3EJIk9W0KeAh4jNbt5C1aW58/d/Of7i+0+aOqPjptuKy3QCaMK2WSpNFI8sWqWp3kQuBo4EXgPGAdrRfmwzYl11CZlEmSRiPJ08DlwGXAcuDXM19TVfce6bik98LtS0nSmPwGWEKr6L+A9j1nRXlNBJMySdKYPAl8i9ZS6STgFGAf7W7M31bV33uMTZqVDcklSWOynrZleR+tZtZGWtmgS4EtSW7rMTZpVp4pkySNSpJtwBrgkqq6tOt+sonWoHxTVW3tNUDpMFwpkySNRpJv07YrHwROS3I7re3PRcBC4Mr+opNmZ1ImSRqTdbSi2suBv9L6YJ4AfATY3o2lQTIpkySNRlWtod11+UtgXzfeDNwE3Mg7ezJKg+KZMknSqCQ5tap2Jzmvqp6bNn92VW3vMzZpNiZlkiRJA+D2pSRJ0gCYlEmSJA2ASZmk0UlyZpJfJXkqycYk30vyqSQbDvHaFV3zaknqlWfKJI1KkuOBZ4HlVbU+SYAfAruAK6vq4l4DlKTDMCmTNCpJvgxcVVXXTps7llZA9BHgOeA04IWq+mqSe2iFRj8GLAWOB04HVlbVvUkWA98B/gXsBL4CLALuoTW6PgBcU1W7knwXuIy2C/GDqlo119craTxsSC5pbBbRmlH/R1XtT7If+DBwA62o6B+TLJzx3hNpidki4NEk9wE/AhZX1atJvk6rdXUA2ACsAD4PnJzkM8Anu/ECYF2S1VX1xhxdp6SR8UyZpLHZCXx8+kSXfC0FXqyqfdW2CPYAx8147x+653YDH6RVgT8FeCDJU8Ay4FTgx8Be4FFaUdK3gXOAzwFrgSeBDwFnzMH1SRopkzJJY/MwcEmSiwC6M2V30nof/q/zGjOf30s7i3Z1VS0G7qBVhL+a1th6CfAQcDOthc/a7nVfAH4G/Ol9uB5J84Tbl5JGpareSvIlYGWSY2g/PtcBdwH3/5//60CSrwGrkxwFTNF6Kh4H3J3kG8DRwE1VtSnJ5Ul+T1sle6Sq/vL+XZmksfOgvyRJ0gC4fSlJkjQAJmWSJEkDYFImSZI0ACZlkiRJA2BSJkmSNAAmZZIkSQNgUiZJkjQAJmWSJEkD8G/kbbROXimEpQAAAABJRU5ErkJggg==\n",
                        "text/plain": [
                            "<Figure size 720x360 with 1 Axes>"
                        ]
                    },
                    "metadata": {
                        "needs_background": "light"
                    },
                    "output_type": "display_data"
                }
            ],
            "source": [
                "merged.sort_values(by='people_per_museum', ascending=False).plot(x='Chinese', y='people_per_museum', kind='bar', figsize=(10, 5), color='#8b70b1')\n",
                "\n",
                "plt.axhline(300000, color='black')"
            ]
        },
        {
            "cell_type": "markdown",
            "metadata": {},
            "source": [
                "## Discussion topics\n",
                "\n",
                "Why do we look at per capita museums in each province instead of the raw numbers?\n",
                "\n",
                "When you talk about a \"bigger\" province, you could talk about either popular _or_ how physically large the area is. Why does per capita make more sense here?\n",
                "\n",
                "\u5b81\u590f\u56de\u65cf\u81ea\u6cbb\u533a and \u9752\u6d77\u7701\thave a large number of museums, per-capita, but not very musuems overall (around 40, compared to 100-250 in the other high per-capita museums). Does it seem reasonable that they're listed between plces like \u9655\u897f\u7701 and \u9655\u897f\u7701 which both have over 200 museums each?\n",
                "\n",
                "We calculated two numbers for this data - people per museum, and museums per person. What are the different feelings associated with each angle? How would the chart look different if it were presented as museums per person instead of people per museum?"
            ]
        },
        {
            "cell_type": "code",
            "execution_count": null,
            "metadata": {},
            "outputs": [],
            "source": []
        }
    ],
    "metadata": {
        "kernelspec": {
            "display_name": "Python 3",
            "language": "python",
            "name": "python3"
        },
        "language_info": {
            "codemirror_mode": {
                "name": "ipython",
                "version": 3
            },
            "file_extension": ".py",
            "mimetype": "text/x-python",
            "name": "python",
            "nbconvert_exporter": "python",
            "pygments_lexer": "ipython3",
            "version": "3.6.8"
        },
        "toc": {
            "base_numbering": 1,
            "nav_menu": {},
            "number_sections": true,
            "sideBar": true,
            "skip_h1_title": false,
            "title_cell": "Table of Contents",
            "title_sidebar": "Contents",
            "toc_cell": false,
            "toc_position": {},
            "toc_section_display": true,
            "toc_window_display": false
        }
    },
    "nbformat": 4,
    "nbformat_minor": 2
}